@@ -56918,6 +56918,33 @@ ordered pairs (for use in defining operations). This is a special case
56918
56918
VAUIUJZBCTVEVFULAVHBCAVGUTCUJVHNVHCUTIUTIUMUNUOUPBCVAVCUIUQUEUR $.
56919
56919
$}
56920
56920
56921
+ ${
56922
+ ofc1.1 $e |- ( ph -> A e. V ) $.
56923
+ ofc1.2 $e |- ( ph -> B e. W ) $.
56924
+ ofc1.3 $e |- ( ph -> F Fn A ) $.
56925
+ ofc1.4 $e |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) $.
56926
+ ofc1g.ex $e |- ( ( ph /\ X e. A ) -> ( B R C ) e. U ) $.
56927
+ $( Left operation by a constant. (Contributed by Mario Carneiro,
56928
+ 24-Jul-2014.) $)
56929
+ ofc1g $p |- ( ( ph /\ X e. A ) ->
56930
+ ( ( ( A X. { B } ) oF R F ) ` X ) = ( B R C ) ) $=
56931
+ ( csn cxp wcel wfn fnconstg syl inidm cfv wceq fvconst2g sylan ofvalg ) A
56932
+ BBCDEBFBCPQZGHHJACIRZUHBSLBCITUAMKKBUBAUIJBRJUHUCCUDLBCJIUEUFNOUG $.
56933
+ $}
56934
+
56935
+ ${
56936
+ ofc2.1 $e |- ( ph -> A e. V ) $.
56937
+ ofc2.2 $e |- ( ph -> B e. W ) $.
56938
+ ofc2.3 $e |- ( ph -> F Fn A ) $.
56939
+ ofc2.4 $e |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) $.
56940
+ ofc2g.ex $e |- ( ( ph /\ X e. A ) -> ( C R B ) e. U ) $.
56941
+ $( Right operation by a constant. (Contributed by NM, 7-Oct-2014.) $)
56942
+ ofc2g $p |- ( ( ph /\ X e. A ) ->
56943
+ ( ( F oF R ( A X. { B } ) ) ` X ) = ( C R B ) ) $=
56944
+ ( csn cxp wcel wfn fnconstg syl inidm cfv wceq fvconst2g sylan ofvalg ) A
56945
+ BBDCEBFGBCPQZHHJMACIRZUHBSLBCITUAKKBUBNAUIJBRJUHUCCUDLBCJIUEUFOUG $.
56946
+ $}
56947
+
56921
56948
${
56922
56949
$d x A $. $d x B $. $d x C $. $d x ph $. $d x R $. $d x W $.
56923
56950
$d x X $.
@@ -57029,6 +57056,38 @@ ordered pairs (for use in defining operations). This is a special case
57029
57056
$}
57030
57057
$}
57031
57058
57059
+ ${
57060
+ $d w x y z A $. $d w x y z F $. $d w x y z G $. $d w x y z ph $.
57061
+ $d w x y z H $. $d w x y z K $. $d w x y z O $. $d w x y z R $.
57062
+ $d w x y z S $. $d w x y z T $. $d V x y $. $d W x y $.
57063
+ caofdi.1 $e |- ( ph -> A e. V ) $.
57064
+ caofdi.2 $e |- ( ph -> F : A --> K ) $.
57065
+ caofdi.3 $e |- ( ph -> G : A --> S ) $.
57066
+ caofdi.4 $e |- ( ph -> H : A --> S ) $.
57067
+ caofdig.r $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x R y ) e. V ) $.
57068
+ ${
57069
+ caofdig.t $e |- ( ( ph /\ ( x e. K /\ y e. S ) ) -> ( x T y ) e. W ) $.
57070
+ caofdi.5 $e |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) ->
57071
+ ( x T ( y R z ) ) = ( ( x T y ) O ( x T z ) ) ) $.
57072
+ $( Transfer a distributive law to the function operation. (Contributed
57073
+ by Mario Carneiro, 26-Jul-2014.) $)
57074
+ caofdig $p |- ( ph ->
57075
+ ( F oF T ( G oF R H ) ) = ( ( F oF T G ) oF O ( F oF T H ) ) ) $=
57076
+ ( vw cv cfv cmpt cof wcel w3a wceq adantlr ffvelcdmda caovdid mpteq2dva
57077
+ co wa oveq2 eleq1d wral oveq1 ralbidv ralrimivva adantr rspcdva feqmptd
57078
+ offval2 3eqtr4d ) AUCEUCUDZIUEZVHJUEZVHKUEZFUOZHUOZUFUCEVIVJHUOZVIVKHUO
57079
+ ZMUOZUFIJKFUGUOZHUGZUOIJVRUOZIKVRUOZMUGUOAUCEVMVPAVHEUHZUPZBCDVIVJVKGFH
57080
+ MLABUDZLUHCUDZGUHDUDZGUHUIWCWDWEFUOHUOWCWDHUOZWCWEHUOMUOUJWAUBUKAELVHIQ
57081
+ ULZAEGVHJRULZAEGVHKSULZUMUNAUCEVIVLHIVQNLNPWGWBVJWDFUOZNUHZVLNUHCGVKWDV
57082
+ KUJZWJVLNWDVKVJFUQURWBWCWDFUOZNUHZCGUSZWKCGUSBGVJWCVJUJZWNWKCGWPWMWJNWC
57083
+ VJWDFUTURVAAWOBGUSWAAWNBCGGTVBVCWHVDWIVDAUCELIQVEZAUCEVJVKFJKNGGPWHWIAU
57084
+ CEGJRVEZAUCEGKSVEZVFVFAUCEVNVOMVSVTNOOPWBVIWDHUOZOUHZVNOUHCGVJWDVJUJWTV
57085
+ NOWDVJVIHUQURWBWFOUHZCGUSZXACGUSBLVIWCVIUJZXBXACGXDWFWTOWCVIWDHUTURVAAX
57086
+ CBLUSWAAXBBCLGUAVBVCWGVDZWHVDWBXAVOOUHCGVKWLWTVOOWDVKVIHUQURXEWIVDAUCEV
57087
+ IVJHIJNLGPWGWHWQWRVFAUCEVIVKHIKNLGPWGWIWQWSVFVFVG $.
57088
+ $}
57089
+ $}
57090
+
57032
57091
57033
57092
$(
57034
57093
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -93498,6 +93557,31 @@ Ordering on reals (cont.)
93498
93557
$}
93499
93558
93500
93559
93560
+ $(
93561
+ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
93562
+ Function operation analogue theorems
93563
+ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
93564
+ $)
93565
+
93566
+ ${
93567
+ $d A x y $. $d F x y $. $d G x y $. $d V x y $.
93568
+ $( Function analogue of ~ negsub . (Contributed by Mario Carneiro,
93569
+ 24-Jul-2014.) $)
93570
+ ofnegsub $p |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) ->
93571
+ ( F oF + ( ( A X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) $=
93572
+ ( vx vy wcel cc wf cv cfv caddc cneg c1 cmul cof co cmin adantl a1i addcl
93573
+ w3a csn cxp simp2 mulcl ax-1cn negcli fconst6 simp3 simp1 inidm off subcl
93574
+ wa eqidd ffnd ffvelcdmda mulcld ofc1g mulm1d negsubd subcld ofvalg eqtr4d
93575
+ eqtrd offeq ) ADGZAHBIZAHCIZUBZEFAAAEJZBKZLHHHVLCKZMZBANMZUCUDZCOPQZBCRPQ
93576
+ ZDDVLHGFJZHGUOZVLVTLQHGVKVLVTUASVHVIVJUEZVKEFAAAOHHHVQCDDWAVLVTOQHGVKVLVT
93577
+ UFSAHVQIVKAVPHNUGUHZUITVHVIVJUJZVHVIVJUKZWEAULZUMWEWEWFVKEFAAARHHHBCDDWAV
93578
+ LVTRQHGVKVLVTUNSWBWDWEWEWFUMVKVLAGUOZVMUPZWGVLVRKVPVNOQVOVKAVPVNOHCDHVLWE
93579
+ VPHGZVKWCTVKAHCWDUQZWGVNUPZWGVPVNWIWGWCTVKAHVLCWDURZUSUTWGVNWLVAVFWGVMVOL
93580
+ QVMVNRQVLVSKWGVMVNVKAHVLBWBURZWLVBVKAAVMVNRAHBCDDVLVKAHBWBUQWJWEWEWFWHWKW
93581
+ GVMVNWMWLVCVDVEVG $.
93582
+ $}
93583
+
93584
+
93501
93585
$(
93502
93586
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
93503
93587
Integer sets
@@ -99395,7 +99479,8 @@ Rational numbers (as a subset of complex numbers)
99395
99479
rational. Note that by "not rational" we mean the negation of "is
99396
99480
rational" (whereas "irrational" is often defined to mean apart from any
99397
99481
rational number - given excluded middle these two definitions would be
99398
- equivalent). (Contributed by NM, 7-Nov-2008.) $)
99482
+ equivalent). For a similar theorem with irrational in place of not
99483
+ rational, see ~ irrmulap . (Contributed by NM, 7-Nov-2008.) $)
99399
99484
irrmul $p |- ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 )
99400
99485
-> ( A x. B ) e. ( RR \ QQ ) ) $=
99401
99486
( cr cq cdif wcel cc0 wne w3a cmul co wn wa eldif remulcl wi 3expb 3ad2ant2
@@ -99408,6 +99493,26 @@ Rational numbers (as a subset of complex numbers)
99408
99493
VFZVPWBVOVPULVOWBWKVPUMZVPVOGDFZWLGUNFWMUOGUPUQBGURUSRUTVAQVBVGVCVDVEVHVIVJ
99409
99494
VKVQCDNVL $.
99410
99495
99496
+ ${
99497
+ $d A q $. $d B q $. $d Q q $.
99498
+ irrmulap.a $e |- ( ph -> A e. RR ) $.
99499
+ irrmulap.aq $e |- ( ph -> A. q e. QQ A =//= q ) $.
99500
+ irrmulap.b $e |- ( ph -> B e. QQ ) $.
99501
+ irrmulap.b0 $e |- ( ph -> B =/= 0 ) $.
99502
+ irrmulap.q $e |- ( ph -> Q e. QQ ) $.
99503
+ $( The product of an irrational with a nonzero rational is irrational. By
99504
+ irrational we mean apart from any rational number. For a similar
99505
+ theorem with not rational in place of irrational, see ~ irrmul .
99506
+ (Contributed by Jim Kingdon, 25-Aug-2025.) $)
99507
+ irrmulap $p |- ( ph -> ( A x. B ) =//= Q ) $=
99508
+ ( co cap wbr cmul cq wcel cc0 cc qcn syl cdiv cv breq2 wne qdivcl syl3anc
99509
+ rspcdva wb recnd apsym syl2anc mpbird cz 0z ax-mp qapne sylancl apdivmuld
99510
+ zq mulcomd breq1d bitrd mpbid ) ADCUAKZBLMZBCNKZDLMZAVEBVDLMZABEUBZLMVHEO
99511
+ VDVIVDBLUCGADOPZCOPZCQUDZVDOPZJHIDCUEUFZUGAVDRPZBRPVEVHUHAVMVOVNVDSTABFUI
99512
+ ZVDBUJUKULAVECBNKZDLMVGADCBAVJDRPJDSTAVKCRPHCSTZVPACQLMZVLIAVKQOPZVSVLUHH
99513
+ QUMPVTUNQUSUOCQUPUQULURAVQVFDLACBVRVPUTVAVBVC $.
99514
+ $}
99515
+
99411
99516
${
99412
99517
$d A x y z $.
99413
99518
$( A positive rational is the quotient of two positive integers.
@@ -130461,6 +130566,24 @@ seq n ( x. ,
130461
130566
AIEZBCDZTBKDZBCDZUWDUVIYLYMYAUWFNVDOYNIBUIPUWGUWEBCBTKDZEUWGUWEBTOXNUNUWIIB
130462
130567
TIOXNVDXOXPUSQUTTUDLYLYQUWHUWDNXNOYRTBBUKPVCQXGXQUJ $.
130463
130568
130569
+ ${
130570
+ $d A q $.
130571
+ $( The sine of a positive irrational number is less than its argument.
130572
+ Here irrational means apart from any rational number. (Contributed by
130573
+ Mario Carneiro, 29-Jul-2014.) $)
130574
+ sinltxirr $p |- ( ( A e. RR+ /\ A. q e. QQ A =//= q )
130575
+ -> ( sin ` A ) < A ) $=
130576
+ ( wcel cap wbr cq wa c1 clt cc0 co cr cle adantr 1red simpr wb 1re simprd
130577
+ c3 crp cv wral csin cfv cioc rpre rpgt0 ad2antrr ltled cxr w3a 0xr elioc2
130578
+ mp2an syl3anbrc cexp cdiv cmin sin01bnd syl resincld sinbnd lelttrd breq2
130579
+ cneg wo cz 1z zq mp1i rspcdva reaplt sylancl mpbid mpjaodan ) AUACZABUBZD
130580
+ EZBFUCZGZAHIEZAUDUEZAIEZHAIEZWAWBGZAJHUFKCZWDWFALCZJAIEZAHMEZWGWAWHWBVQWH
130581
+ VTAUGNZNZVQWIVTWBAUHUIWFAHWLWFOWAWBPUJJUKCHLCZWGWHWIWJULQUMRJHAUNUOUPWGAA
130582
+ TUQKTURKUSKWCIEWDAUTSVAWAWEGZWCHAWNAWAWHWEWKNZVBWNOWOWNWHWCHMEZWOWHHVFWCM
130583
+ EWPAVCSVAWAWEPVDWAAHDEZWBWEVGZWAVSWQBFHVRHADVEVQVTPHVHCHFCWAVIHVJVKVLWAWH
130584
+ WMWQWRQWKRAHVMVNVOVP $.
130585
+ $}
130586
+
130464
130587
$( The sine of a positive real number less than or equal to 1 is positive.
130465
130588
(Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen,
130466
130589
25-Sep-2020.) $)
0 commit comments