@@ -11688,6 +11688,22 @@ This definition (in the form of ~ dfifp2 ) appears in Section II.24 of
11688
11688
( wnor wo wn notnotb df-nor notbii nornot 3bitr2ri bicomi ) ABCZLCZABDZNNEZ
11689
11689
ELEMNFLOABGHLIJK $.
11690
11690
11691
+ $( A characterization of when an expression involving nor associates. This
11692
+ is identical to the case when alternative denial is associative, see
11693
+ ~ nanass . Remark: Like alternative denial, nor is also commutative, see
11694
+ ~ norcom . (Contributed by RP, 29-Oct-2023.) $)
11695
+ norass $p |- ( ( ph <-> ch ) <->
11696
+ ( ( ( ph -\/ ps ) -\/ ch ) <-> ( ph -\/ ( ps -\/ ch ) ) ) ) $=
11697
+ ( wb wn wa wnor notbid wi wo olc oran sylib anim1ci animorl ex df-nor ioran
11698
+ jcn 3bitri id bicomd anbi2d anbi12d con4d com12 anim12i dfbi2 impbii norcom
11699
+ 3imtr4i notbii anbi2i bitri bibi12i bitr4i ) ACDZCEZBEZAEZFZEZFZUTUSURFZEZF
11700
+ ZDZABGZCGZABCGZGZDUQVGUQURUTVBVEUQUTURUQACUQUAHZUBUQVAVDUQUTURUSVLUCHUDVCVF
11701
+ IZVFVCIZFACIZCAIZFVGUQVMVOVNVPAVMCACVMAURVMEAURFZVCVFAVBURABAJZVBABKBALMNVQ
11702
+ AVDJVFEAURVDOAVDLMSPUEUFCVNACAVNCUTVNECUTFZVFVCCVEUTCBCJZVECBKBCLMNVSCVAJVC
11703
+ ECUTVAOCVALMSPUEUFUGVCVFUHACUHUKUIVIVCVKVFVICVHGCVHJEZVCVHCUJCVHQWAURVHEZFV
11704
+ CCVHRWBVBURVHVAVHBAGVREVAABUJBAQBARTULUMUNTVKAVJJEUTVJEZFVFAVJQAVJRWCVEUTVJ
11705
+ VDVJVTEVDBCQBCRUNULUMTUOUP $.
11706
+
11691
11707
$(
11692
11708
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
11693
11709
True and false constants
@@ -635983,7 +635999,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
635983
635999
$)
635984
636000
635985
636001
$( A special case where implication appears to conform to a mixed associative
635986
- law. (Contributed by Richard Penner , 29-Feb-2020.) $)
636002
+ law. (Contributed by RP , 29-Feb-2020.) $)
635987
636003
rp-fakeimass $p |- ( ( ph \/ ch ) <->
635988
636004
( ( ( ph -> ps ) -> ch )
635989
636005
<-> ( ph -> ( ps -> ch ) ) ) ) $=
@@ -635993,7 +636009,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
635993
636009
EEUGGUMACAUHTUAUBUCUD $.
635994
636010
635995
636011
$( A special case where a mixture of and and or appears to conform to a mixed
635996
- associative law. (Contributed by Richard Penner , 26-Feb-2020.) $)
636012
+ associative law. (Contributed by RP , 26-Feb-2020.) $)
635997
636013
rp-fakeanorass $p |- ( ( ch -> ph ) <->
635998
636014
( ( ( ph /\ ps ) \/ ch )
635999
636015
<-> ( ph /\ ( ps \/ ch ) ) ) ) $=
@@ -636004,7 +636020,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636004
636020
RUMABCUFUGUHUI $.
636005
636021
636006
636022
$( A special case where a mixture of or and and appears to conform to a mixed
636007
- associative law. (Contributed by Richard Penner , 29-Feb-2020.) $)
636023
+ associative law. (Contributed by RP , 29-Feb-2020.) $)
636008
636024
rp-fakeoranass $p |- ( ( ph -> ch ) <->
636009
636025
( ( ( ph \/ ps ) /\ ch )
636010
636026
<-> ( ph \/ ( ps /\ ch ) ) ) ) $=
@@ -636015,7 +636031,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636015
636031
${
636016
636032
$d x A $. $d x B $. $d x C $.
636017
636033
$( A special case where a mixture of intersection and union appears to
636018
- conform to a mixed associative law. (Contributed by Richard Penner ,
636034
+ conform to a mixed associative law. (Contributed by RP ,
636019
636035
26-Feb-2020.) $)
636020
636036
rp-fakeinunass $p |- ( C C_ A <->
636021
636037
( ( A i^i B ) u. C ) = ( A i^i ( B u. C ) ) ) $=
@@ -636027,8 +636043,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636027
636043
$}
636028
636044
636029
636045
$( A special case where a mixture of union and intersection appears to
636030
- conform to a mixed associative law. (Contributed by Richard Penner,
636031
- 29-Feb-2020.) $)
636046
+ conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) $)
636032
636047
rp-fakeuninass $p |- ( A C_ C <->
636033
636048
( ( A u. B ) i^i C ) = ( A u. ( B i^i C ) ) ) $=
636034
636049
( wss cin wceq rp-fakeinunass eqcom incom uncom ineq1i eqtri uneq2i eqeq12i
@@ -636049,7 +636064,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636049
636064
$d n A $.
636050
636065
$( A set is said to be finite if it can be put in one-to-one correspondence
636051
636066
with all the natural numbers between 1 and some ` n e. NN0 ` .
636052
- (Contributed by Richard Penner , 3-Mar-2020.) $)
636067
+ (Contributed by RP , 3-Mar-2020.) $)
636053
636068
rp-isfinite5 $p |- ( A e. Fin <-> E. n e. NN0 ( 1 ... n ) ~~ A ) $=
636054
636069
( cfn wcel c1 cv cfz co cen wbr cn0 wrex chash cfv cvv oveq2 mpsyl sylibr
636055
636070
wa wceq wex fvex hashcl isfinite4 biimpi jca breq1d anbi12d spcegv df-rex
@@ -636065,7 +636080,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636065
636080
$d n A $.
636066
636081
$( A set is said to be finite if it is either empty or it can be put in
636067
636082
one-to-one correspondence with all the natural numbers between 1 and
636068
- some ` n e. NN ` . (Contributed by Richard Penner , 10-Mar-2020.) $)
636083
+ some ` n e. NN ` . (Contributed by RP , 10-Mar-2020.) $)
636069
636084
rp-isfinite6 $p |- ( A e. Fin <-> ( A = (/) \/
636070
636085
E. n e. NN ( 1 ... n ) ~~ A ) ) $=
636071
636086
( cfn wcel c0 wceq wa wn wo c1 cfz cen wbr cn bitri cn0 wex w3a cc0 syl
@@ -636171,7 +636186,7 @@ of all sets ( ~ inex1g ).
636171
636186
$d u v x y A $.
636172
636187
$( A definition of the finite intersection property of a class based on
636173
636188
closure under pairwise intersection of its elements is independent of
636174
- the dummy variables. (Contributed by Richard Penner , 1-Jan-2020.) $)
636189
+ the dummy variables. (Contributed by RP , 1-Jan-2020.) $)
636175
636190
fipjust $p |- ( A. u e. A A. v e. A ( u i^i v ) e. A
636176
636191
<-> A. x e. A A. y e. A ( x i^i y ) e. A ) $=
636177
636192
( cv cin wcel weq ineq1 eleq1d ineq2 cbvral2v ) DFZCFZGZEHAFZBFZGZEHQOGZE
@@ -636188,7 +636203,7 @@ of all sets ( ~ inex1g ).
636188
636203
cllem0.closed $e |- ( ( ch /\ th ) -> ps ) $.
636189
636204
$( The class of all sets with property ` ph ( z ) ` is closed under the
636190
636205
binary operation on sets defined in ` R ( x , y ) ` . (Contributed by
636191
- Richard Penner , 3-Jan-2020.) $)
636206
+ RP , 3-Jan-2020.) $)
636192
636207
cllem0 $p |- A. x e. V A. y e. V R e. V $=
636193
636208
( wcel wral elab2 ralbii cv wi wal elexi df-ral 3bitri syl2anb ex alrimiv
636194
636209
vex mpgbir ) HJQZFJRZEJRZEUAZJQZFUAZJQZBUBZFUCZUBZEUNBFJRZEJRUTEJRVAEUCUM
@@ -636200,14 +636215,14 @@ of all sets ( ~ inex1g ).
636200
636215
$d x y z $. $d y A $. $d z B $.
636201
636216
superficl.a $e |- A = { z | B C_ z } $.
636202
636217
$( The class of all supersets of a class has the finite intersection
636203
- property. (Contributed by Richard Penner , 1-Jan-2020.) (Proof
636204
- shortened by Richard Penner, 3-Jan-2020.) $)
636218
+ property. (Contributed by RP , 1-Jan-2020.) (Proof shortened by RP,
636219
+ 3-Jan-2020.) $)
636205
636220
superficl $p |- A. x e. A A. y e. A ( x i^i y ) e. A $=
636206
636221
( cv wss cin cvv vex inex1 sseq2 wa ssin biimpi cllem0 ) ECGZHEAGZBGZIZHZ
636207
636222
ESHZETHZABCUAJDFSTAKLRUAEMRSEMRTEMUCUDNUBESTOPQ $.
636208
636223
636209
636224
$( The class of all supersets of a class is closed under binary union.
636210
- (Contributed by Richard Penner , 3-Jan-2020.) $)
636225
+ (Contributed by RP , 3-Jan-2020.) $)
636211
636226
superuncl $p |- A. x e. A A. y e. A ( x u. y ) e. A $=
636212
636227
( cv wss cun cvv vex unex sseq2 ssun3 adantr cllem0 ) ECGZHEAGZBGZIZHZERH
636213
636228
ZESHZABCTJDFRSAKBKLQTEMQREMQSEMUBUAUCERSNOP $.
@@ -636218,26 +636233,26 @@ of all sets ( ~ inex1g ).
636218
636233
$( N.B. This hypothesis is same as the power class of B. $)
636219
636234
ssficl.a $e |- A = { z | z C_ B } $.
636220
636235
$( The class of all subsets of a class has the finite intersection
636221
- property. (Contributed by Richard Penner , 1-Jan-2020.) (Proof
636222
- shortened by Richard Penner, 3-Jan-2020.) $)
636236
+ property. (Contributed by RP , 1-Jan-2020.) (Proof shortened by RP,
636237
+ 3-Jan-2020.) $)
636223
636238
ssficl $p |- A. x e. A A. y e. A ( x i^i y ) e. A $=
636224
636239
( cv wss cin cvv vex inex1 sseq1 ssinss1 adantr cllem0 ) CGZEHAGZBGZIZEHZ
636225
636240
REHZSEHZABCTJDFRSAKLQTEMQREMQSEMUBUAUCRSENOP $.
636226
636241
636227
636242
$( The class of all subsets of a class is closed under binary union.
636228
- (Contributed by Richard Penner , 3-Jan-2020.) $)
636243
+ (Contributed by RP , 3-Jan-2020.) $)
636229
636244
ssuncl $p |- A. x e. A A. y e. A ( x u. y ) e. A $=
636230
636245
( cv wss cun cvv vex unex sseq1 wa unss biimpi cllem0 ) CGZEHAGZBGZIZEHZS
636231
636246
EHZTEHZABCUAJDFSTAKBKLRUAEMRSEMRTEMUCUDNUBSTEOPQ $.
636232
636247
636233
636248
$( The class of all subsets of a class is closed under class difference.
636234
- (Contributed by Richard Penner , 3-Jan-2020.) $)
636249
+ (Contributed by RP , 3-Jan-2020.) $)
636235
636250
ssdifcl $p |- A. x e. A A. y e. A ( x \ y ) e. A $=
636236
636251
( cv wss cdif cvv vex difexi sseq1 ssdifss adantr cllem0 ) CGZEHAGZBGZIZE
636237
636252
HZREHZSEHZABCTJDFRSAKLQTEMQREMQSEMUBUAUCRESNOP $.
636238
636253
636239
636254
$( The class of all subsets of a class is closed under symmetric
636240
- difference. (Contributed by Richard Penner , 3-Jan-2020.) $)
636255
+ difference. (Contributed by RP , 3-Jan-2020.) $)
636241
636256
sssymdifcl $p |- A. x e. A A. y e. A ( ( x \ y ) u. ( y \ x ) ) e. A $=
636242
636257
( cv wss cdif cun cvv wcel vex difexg ax-mp unex sseq1 ssdifss wa unss
636243
636258
biimpi syl2an cllem0 ) CGZEHAGZBGZIZUFUEIZJZEHZUEEHZUFEHZABCUIKDFUGUHUEKL
@@ -636251,7 +636266,7 @@ of all sets ( ~ inex1g ).
636251
636266
fiinfi.b $e |- ( ph -> A. x e. B A. y e. B ( x i^i y ) e. B ) $.
636252
636267
fiinfi.c $e |- ( ph -> C = ( A i^i B ) ) $.
636253
636268
$( If two classes have the finite intersection property, then so does their
636254
- intersection. (Contributed by Richard Penner , 1-Jan-2020.) $)
636269
+ intersection. (Contributed by RP , 1-Jan-2020.) $)
636255
636270
fiinfi $p |- ( ph -> A. x e. C A. y e. C ( x i^i y ) e. C ) $=
636256
636271
( cv cin wcel wral elinel1 imim1i ralimi2 imim12i syl ralbidv mpbird elin
636257
636272
wa elinel2 r19.26-2 sylanbrc 2ralbii sylibr eleq2d raleqdv ) ABJZCJZKZFLZ
@@ -637468,13 +637483,13 @@ of all sets ( ~ inex1g ).
637468
637483
${
637469
637484
conrel1d.a $e |- ( ph -> `' A = (/) ) $.
637470
637485
$( Deduction about composition with a class with no relational content.
637471
- (Contributed by Richard Penner , 24-Dec-2019.) $)
637486
+ (Contributed by RP , 24-Dec-2019.) $)
637472
637487
conrel1d $p |- ( ph -> ( A o. B ) = (/) ) $=
637473
637488
( cdm crn cin incom wceq ccnv dfdm4 rneqd rn0 syl6eq syl5eq ineq2 in0 syl
637474
637489
c0 coemptyd ) ABCABEZCFZGUBUAGZSUAUBHAUASIZUCSIAUABJZFZSBKAUFSFSAUESDLMNO
637475
637490
UDUCUBSGSUASUBPUBQNROT $.
637476
637491
$( Deduction about composition with a class with no relational content.
637477
- (Contributed by Richard Penner , 24-Dec-2019.) $)
637492
+ (Contributed by RP , 24-Dec-2019.) $)
637478
637493
conrel2d $p |- ( ph -> ( B o. A ) = (/) ) $=
637479
637494
( cdm crn cin ccnv c0 wceq df-rn ineq2i a1i dmeqd ineq2d dm0 eqtri 3eqtrd
637480
637495
in0 coemptyd ) ACBACEZBFZGZUABHZEZGZUAIEZGZIUCUFJAUBUEUABKLMAUEUGUAAUDIDN
@@ -637493,7 +637508,7 @@ Transitive relations (not to be confused with transitive classes).
637493
637508
trrelind.s $e |- ( ph -> ( S o. S ) C_ S ) $.
637494
637509
trrelind.t $e |- ( ph -> T = ( R i^i S ) ) $.
637495
637510
$( The intersection of transitive relations is a transitive relation.
637496
- (Contributed by Richard Penner , 24-Dec-2019.) $)
637511
+ (Contributed by RP , 24-Dec-2019.) $)
637497
637512
trrelind $p |- ( ph -> ( T o. T ) C_ T ) $=
637498
637513
( cin ccom wss inss1 a1i trrelssd inss2 ssind coeq12d 3sstr4d ) ABCHZRIZR
637499
637514
DDIDASBCABRRERBJABCKLZTMACRRFRCJABCNLZUAMOADRDRGGPGQ $.
@@ -637503,7 +637518,7 @@ Transitive relations (not to be confused with transitive classes).
637503
637518
xpintrreld.r $e |- ( ph -> ( R o. R ) C_ R ) $.
637504
637519
xpintrreld.s $e |- ( ph -> S = ( R i^i ( A X. B ) ) ) $.
637505
637520
$( The intersection of a transitive relation with a cross product is a
637506
- transitve relation. (Contributed by Richard Penner , 24-Dec-2019.) $)
637521
+ transitve relation. (Contributed by RP , 24-Dec-2019.) $)
637507
637522
xpintrreld $p |- ( ph -> ( S o. S ) C_ S ) $=
637508
637523
( cxp ccom wss xptrrel a1i trrelind ) ADBCHZEFNNINJABCKLGM $.
637509
637524
$}
@@ -637512,7 +637527,7 @@ Transitive relations (not to be confused with transitive classes).
637512
637527
restrreld.r $e |- ( ph -> ( R o. R ) C_ R ) $.
637513
637528
restrreld.s $e |- ( ph -> S = ( R |` A ) ) $.
637514
637529
$( The restriction of a transitive relation is a transitive relation.
637515
- (Contributed by Richard Penner , 24-Dec-2019.) $)
637530
+ (Contributed by RP , 24-Dec-2019.) $)
637516
637531
restrreld $p |- ( ph -> ( S o. S ) C_ S ) $=
637517
637532
( cvv cres cxp cin df-res syl6eq xpintrreld ) ABGCDEADCBHCBGIJFCBKLM $.
637518
637533
$}
@@ -637521,7 +637536,7 @@ Transitive relations (not to be confused with transitive classes).
637521
637536
trrelsuperreldg.r $e |- ( ph -> Rel R ) $.
637522
637537
trrelsuperreldg.s $e |- ( ph -> S = ( dom R X. ran R ) ) $.
637523
637538
$( Concrete construction of a superclass of relation ` R ` which is a
637524
- transitive relation. (Contributed by Richard Penner , 25-Dec-2019.) $)
637539
+ transitive relation. (Contributed by RP , 25-Dec-2019.) $)
637525
637540
trrelsuperreldg $p |- ( ph -> ( R C_ S /\ ( S o. S ) C_ S ) ) $=
637526
637541
( wss ccom cdm crn cxp relssdmrn syl sseqtr4d xptrrel a1i coeq12d 3sstr4d
637527
637542
wrel jca ) ABCFCCGZCFABBHZBIZJZCABRBUCFDBKLEMAUCUCGZUCTCUDUCFAUAUBNOACUCC
@@ -637532,8 +637547,8 @@ Transitive relations (not to be confused with transitive classes).
637532
637547
$d x y z $. $d y A $.
637533
637548
trficl.a $e |- A = { z | ( z o. z ) C_ z } $.
637534
637549
$( The class of all transitive relations has the finite intersection
637535
- property. (Contributed by Richard Penner , 1-Jan-2020.) (Proof
637536
- shortened by Richard Penner, 3-Jan-2020.) $)
637550
+ property. (Contributed by RP , 1-Jan-2020.) (Proof shortened by RP,
637551
+ 3-Jan-2020.) $)
637537
637552
trficl $p |- A. x e. A A. y e. A ( x i^i y ) e. A $=
637538
637553
( cv ccom wss cin cvv vex inex1 wceq id coeq12d sseq12d weq trin2 cllem0
637539
637554
) CFZTGZTHAFZBFZIZUDGZUDHUBUBGZUBHUCUCGZUCHABCUDJDEUBUCAKLTUDMZUAUETUDUHT
@@ -637542,7 +637557,7 @@ Transitive relations (not to be confused with transitive classes).
637542
637557
$}
637543
637558
637544
637559
$( The converse of a transitive relation is a transitive relation.
637545
- (Contributed by Richard Penner , 25-Dec-2019.) $)
637560
+ (Contributed by RP , 25-Dec-2019.) $)
637546
637561
cnvtrrel $p |- ( ( S o. S ) C_ S <-> ( `' S o. `' S ) C_ `' S ) $=
637547
637562
( ccom wss ccnv cnvss cnvco cnveqi cocnvcnv1 cocnvcnv2 3eqtri sseq1i biimpi
637548
637563
eqtri cnvcnvss syl6ss syl impbii bitri ) AABZACZSDZADZCZUBUBBZUBCTUCSAEUCUA
@@ -639550,7 +639565,7 @@ adopting f( ` ph ` ) as ` if- ( ph , ps , ch ) ` would result in the
639550
639565
639551
639566
$( If the ` R ` -image of a class ` A ` is a subclass of ` B ` , then the
639552
639567
restriction of ` R ` to ` A ` is a subset of the Cartesian product of
639553
- ` A ` and ` B ` . (Contributed by Richard Penner , 24-Dec-2019.) $)
639568
+ ` A ` and ` B ` . (Contributed by RP , 24-Dec-2019.) $)
639554
639569
rp-imass $p |- ( ( R " A ) C_ B <-> ( R |` A ) C_ ( A X. B ) ) $=
639555
639570
( cima wss cres crn cdm cxp df-ima sseq1i dmres inss1 eqsstri biantrur wrel
639556
639571
wa cin relres syl6ss relssdmrn xpss12 syl5ss dmss dmxpss rnss rnxpss impbii
0 commit comments