Skip to content

Commit 1f81415

Browse files
authored
Add norass in parallel with existing nanass. (#3601)
Shorten Richard Penner to RP in my mathbox.
1 parent aacd12f commit 1f81415

File tree

1 file changed

+44
-29
lines changed

1 file changed

+44
-29
lines changed

set.mm

Lines changed: 44 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -11688,6 +11688,22 @@ This definition (in the form of ~ dfifp2 ) appears in Section II.24 of
1168811688
( wnor wo wn notnotb df-nor notbii nornot 3bitr2ri bicomi ) ABCZLCZABDZNNEZ
1168911689
ELEMNFLOABGHLIJK $.
1169011690

11691+
$( A characterization of when an expression involving nor associates. This
11692+
is identical to the case when alternative denial is associative, see
11693+
~ nanass . Remark: Like alternative denial, nor is also commutative, see
11694+
~ norcom . (Contributed by RP, 29-Oct-2023.) $)
11695+
norass $p |- ( ( ph <-> ch ) <->
11696+
( ( ( ph -\/ ps ) -\/ ch ) <-> ( ph -\/ ( ps -\/ ch ) ) ) ) $=
11697+
( wb wn wa wnor notbid wi wo olc oran sylib anim1ci animorl ex df-nor ioran
11698+
jcn 3bitri id bicomd anbi2d anbi12d con4d com12 anim12i dfbi2 impbii norcom
11699+
3imtr4i notbii anbi2i bitri bibi12i bitr4i ) ACDZCEZBEZAEZFZEZFZUTUSURFZEZF
11700+
ZDZABGZCGZABCGZGZDUQVGUQURUTVBVEUQUTURUQACUQUAHZUBUQVAVDUQUTURUSVLUCHUDVCVF
11701+
IZVFVCIZFACIZCAIZFVGUQVMVOVNVPAVMCACVMAURVMEAURFZVCVFAVBURABAJZVBABKBALMNVQ
11702+
AVDJVFEAURVDOAVDLMSPUEUFCVNACAVNCUTVNECUTFZVFVCCVEUTCBCJZVECBKBCLMNVSCVAJVC
11703+
ECUTVAOCVALMSPUEUFUGVCVFUHACUHUKUIVIVCVKVFVICVHGCVHJEZVCVHCUJCVHQWAURVHEZFV
11704+
CCVHRWBVBURVHVAVHBAGVREVAABUJBAQBARTULUMUNTVKAVJJEUTVJEZFVFAVJQAVJRWCVEUTVJ
11705+
VDVJVTEVDBCQBCRUNULUMTUOUP $.
11706+
1169111707
$(
1169211708
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
1169311709
True and false constants
@@ -635983,7 +635999,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
635983635999
$)
635984636000

635985636001
$( A special case where implication appears to conform to a mixed associative
635986-
law. (Contributed by Richard Penner, 29-Feb-2020.) $)
636002+
law. (Contributed by RP, 29-Feb-2020.) $)
635987636003
rp-fakeimass $p |- ( ( ph \/ ch ) <->
635988636004
( ( ( ph -> ps ) -> ch )
635989636005
<-> ( ph -> ( ps -> ch ) ) ) ) $=
@@ -635993,7 +636009,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
635993636009
EEUGGUMACAUHTUAUBUCUD $.
635994636010

635995636011
$( A special case where a mixture of and and or appears to conform to a mixed
635996-
associative law. (Contributed by Richard Penner, 26-Feb-2020.) $)
636012+
associative law. (Contributed by RP, 26-Feb-2020.) $)
635997636013
rp-fakeanorass $p |- ( ( ch -> ph ) <->
635998636014
( ( ( ph /\ ps ) \/ ch )
635999636015
<-> ( ph /\ ( ps \/ ch ) ) ) ) $=
@@ -636004,7 +636020,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636004636020
RUMABCUFUGUHUI $.
636005636021

636006636022
$( A special case where a mixture of or and and appears to conform to a mixed
636007-
associative law. (Contributed by Richard Penner, 29-Feb-2020.) $)
636023+
associative law. (Contributed by RP, 29-Feb-2020.) $)
636008636024
rp-fakeoranass $p |- ( ( ph -> ch ) <->
636009636025
( ( ( ph \/ ps ) /\ ch )
636010636026
<-> ( ph \/ ( ps /\ ch ) ) ) ) $=
@@ -636015,7 +636031,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636015636031
${
636016636032
$d x A $. $d x B $. $d x C $.
636017636033
$( A special case where a mixture of intersection and union appears to
636018-
conform to a mixed associative law. (Contributed by Richard Penner,
636034+
conform to a mixed associative law. (Contributed by RP,
636019636035
26-Feb-2020.) $)
636020636036
rp-fakeinunass $p |- ( C C_ A <->
636021636037
( ( A i^i B ) u. C ) = ( A i^i ( B u. C ) ) ) $=
@@ -636027,8 +636043,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636027636043
$}
636028636044

636029636045
$( A special case where a mixture of union and intersection appears to
636030-
conform to a mixed associative law. (Contributed by Richard Penner,
636031-
29-Feb-2020.) $)
636046+
conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) $)
636032636047
rp-fakeuninass $p |- ( A C_ C <->
636033636048
( ( A u. B ) i^i C ) = ( A u. ( B i^i C ) ) ) $=
636034636049
( wss cin wceq rp-fakeinunass eqcom incom uncom ineq1i eqtri uneq2i eqeq12i
@@ -636049,7 +636064,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636049636064
$d n A $.
636050636065
$( A set is said to be finite if it can be put in one-to-one correspondence
636051636066
with all the natural numbers between 1 and some ` n e. NN0 ` .
636052-
(Contributed by Richard Penner, 3-Mar-2020.) $)
636067+
(Contributed by RP, 3-Mar-2020.) $)
636053636068
rp-isfinite5 $p |- ( A e. Fin <-> E. n e. NN0 ( 1 ... n ) ~~ A ) $=
636054636069
( cfn wcel c1 cv cfz co cen wbr cn0 wrex chash cfv cvv oveq2 mpsyl sylibr
636055636070
wa wceq wex fvex hashcl isfinite4 biimpi jca breq1d anbi12d spcegv df-rex
@@ -636065,7 +636080,7 @@ is in the span of P(i)(X), so there is an R-linear combination of
636065636080
$d n A $.
636066636081
$( A set is said to be finite if it is either empty or it can be put in
636067636082
one-to-one correspondence with all the natural numbers between 1 and
636068-
some ` n e. NN ` . (Contributed by Richard Penner, 10-Mar-2020.) $)
636083+
some ` n e. NN ` . (Contributed by RP, 10-Mar-2020.) $)
636069636084
rp-isfinite6 $p |- ( A e. Fin <-> ( A = (/) \/
636070636085
E. n e. NN ( 1 ... n ) ~~ A ) ) $=
636071636086
( cfn wcel c0 wceq wa wn wo c1 cfz cen wbr cn bitri cn0 wex w3a cc0 syl
@@ -636171,7 +636186,7 @@ of all sets ( ~ inex1g ).
636171636186
$d u v x y A $.
636172636187
$( A definition of the finite intersection property of a class based on
636173636188
closure under pairwise intersection of its elements is independent of
636174-
the dummy variables. (Contributed by Richard Penner, 1-Jan-2020.) $)
636189+
the dummy variables. (Contributed by RP, 1-Jan-2020.) $)
636175636190
fipjust $p |- ( A. u e. A A. v e. A ( u i^i v ) e. A
636176636191
<-> A. x e. A A. y e. A ( x i^i y ) e. A ) $=
636177636192
( cv cin wcel weq ineq1 eleq1d ineq2 cbvral2v ) DFZCFZGZEHAFZBFZGZEHQOGZE
@@ -636188,7 +636203,7 @@ of all sets ( ~ inex1g ).
636188636203
cllem0.closed $e |- ( ( ch /\ th ) -> ps ) $.
636189636204
$( The class of all sets with property ` ph ( z ) ` is closed under the
636190636205
binary operation on sets defined in ` R ( x , y ) ` . (Contributed by
636191-
Richard Penner, 3-Jan-2020.) $)
636206+
RP, 3-Jan-2020.) $)
636192636207
cllem0 $p |- A. x e. V A. y e. V R e. V $=
636193636208
( wcel wral elab2 ralbii cv wi wal elexi df-ral 3bitri syl2anb ex alrimiv
636194636209
vex mpgbir ) HJQZFJRZEJRZEUAZJQZFUAZJQZBUBZFUCZUBZEUNBFJRZEJRUTEJRVAEUCUM
@@ -636200,14 +636215,14 @@ of all sets ( ~ inex1g ).
636200636215
$d x y z $. $d y A $. $d z B $.
636201636216
superficl.a $e |- A = { z | B C_ z } $.
636202636217
$( The class of all supersets of a class has the finite intersection
636203-
property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof
636204-
shortened by Richard Penner, 3-Jan-2020.) $)
636218+
property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP,
636219+
3-Jan-2020.) $)
636205636220
superficl $p |- A. x e. A A. y e. A ( x i^i y ) e. A $=
636206636221
( cv wss cin cvv vex inex1 sseq2 wa ssin biimpi cllem0 ) ECGZHEAGZBGZIZHZ
636207636222
ESHZETHZABCUAJDFSTAKLRUAEMRSEMRTEMUCUDNUBESTOPQ $.
636208636223

636209636224
$( The class of all supersets of a class is closed under binary union.
636210-
(Contributed by Richard Penner, 3-Jan-2020.) $)
636225+
(Contributed by RP, 3-Jan-2020.) $)
636211636226
superuncl $p |- A. x e. A A. y e. A ( x u. y ) e. A $=
636212636227
( cv wss cun cvv vex unex sseq2 ssun3 adantr cllem0 ) ECGZHEAGZBGZIZHZERH
636213636228
ZESHZABCTJDFRSAKBKLQTEMQREMQSEMUBUAUCERSNOP $.
@@ -636218,26 +636233,26 @@ of all sets ( ~ inex1g ).
636218636233
$( N.B. This hypothesis is same as the power class of B. $)
636219636234
ssficl.a $e |- A = { z | z C_ B } $.
636220636235
$( The class of all subsets of a class has the finite intersection
636221-
property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof
636222-
shortened by Richard Penner, 3-Jan-2020.) $)
636236+
property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP,
636237+
3-Jan-2020.) $)
636223636238
ssficl $p |- A. x e. A A. y e. A ( x i^i y ) e. A $=
636224636239
( cv wss cin cvv vex inex1 sseq1 ssinss1 adantr cllem0 ) CGZEHAGZBGZIZEHZ
636225636240
REHZSEHZABCTJDFRSAKLQTEMQREMQSEMUBUAUCRSENOP $.
636226636241

636227636242
$( The class of all subsets of a class is closed under binary union.
636228-
(Contributed by Richard Penner, 3-Jan-2020.) $)
636243+
(Contributed by RP, 3-Jan-2020.) $)
636229636244
ssuncl $p |- A. x e. A A. y e. A ( x u. y ) e. A $=
636230636245
( cv wss cun cvv vex unex sseq1 wa unss biimpi cllem0 ) CGZEHAGZBGZIZEHZS
636231636246
EHZTEHZABCUAJDFSTAKBKLRUAEMRSEMRTEMUCUDNUBSTEOPQ $.
636232636247

636233636248
$( The class of all subsets of a class is closed under class difference.
636234-
(Contributed by Richard Penner, 3-Jan-2020.) $)
636249+
(Contributed by RP, 3-Jan-2020.) $)
636235636250
ssdifcl $p |- A. x e. A A. y e. A ( x \ y ) e. A $=
636236636251
( cv wss cdif cvv vex difexi sseq1 ssdifss adantr cllem0 ) CGZEHAGZBGZIZE
636237636252
HZREHZSEHZABCTJDFRSAKLQTEMQREMQSEMUBUAUCRESNOP $.
636238636253

636239636254
$( The class of all subsets of a class is closed under symmetric
636240-
difference. (Contributed by Richard Penner, 3-Jan-2020.) $)
636255+
difference. (Contributed by RP, 3-Jan-2020.) $)
636241636256
sssymdifcl $p |- A. x e. A A. y e. A ( ( x \ y ) u. ( y \ x ) ) e. A $=
636242636257
( cv wss cdif cun cvv wcel vex difexg ax-mp unex sseq1 ssdifss wa unss
636243636258
biimpi syl2an cllem0 ) CGZEHAGZBGZIZUFUEIZJZEHZUEEHZUFEHZABCUIKDFUGUHUEKL
@@ -636251,7 +636266,7 @@ of all sets ( ~ inex1g ).
636251636266
fiinfi.b $e |- ( ph -> A. x e. B A. y e. B ( x i^i y ) e. B ) $.
636252636267
fiinfi.c $e |- ( ph -> C = ( A i^i B ) ) $.
636253636268
$( If two classes have the finite intersection property, then so does their
636254-
intersection. (Contributed by Richard Penner, 1-Jan-2020.) $)
636269+
intersection. (Contributed by RP, 1-Jan-2020.) $)
636255636270
fiinfi $p |- ( ph -> A. x e. C A. y e. C ( x i^i y ) e. C ) $=
636256636271
( cv cin wcel wral elinel1 imim1i ralimi2 imim12i syl ralbidv mpbird elin
636257636272
wa elinel2 r19.26-2 sylanbrc 2ralbii sylibr eleq2d raleqdv ) ABJZCJZKZFLZ
@@ -637468,13 +637483,13 @@ of all sets ( ~ inex1g ).
637468637483
${
637469637484
conrel1d.a $e |- ( ph -> `' A = (/) ) $.
637470637485
$( Deduction about composition with a class with no relational content.
637471-
(Contributed by Richard Penner, 24-Dec-2019.) $)
637486+
(Contributed by RP, 24-Dec-2019.) $)
637472637487
conrel1d $p |- ( ph -> ( A o. B ) = (/) ) $=
637473637488
( cdm crn cin incom wceq ccnv dfdm4 rneqd rn0 syl6eq syl5eq ineq2 in0 syl
637474637489
c0 coemptyd ) ABCABEZCFZGUBUAGZSUAUBHAUASIZUCSIAUABJZFZSBKAUFSFSAUESDLMNO
637475637490
UDUCUBSGSUASUBPUBQNROT $.
637476637491
$( Deduction about composition with a class with no relational content.
637477-
(Contributed by Richard Penner, 24-Dec-2019.) $)
637492+
(Contributed by RP, 24-Dec-2019.) $)
637478637493
conrel2d $p |- ( ph -> ( B o. A ) = (/) ) $=
637479637494
( cdm crn cin ccnv c0 wceq df-rn ineq2i a1i dmeqd ineq2d dm0 eqtri 3eqtrd
637480637495
in0 coemptyd ) ACBACEZBFZGZUABHZEZGZUAIEZGZIUCUFJAUBUEUABKLMAUEUGUAAUDIDN
@@ -637493,7 +637508,7 @@ Transitive relations (not to be confused with transitive classes).
637493637508
trrelind.s $e |- ( ph -> ( S o. S ) C_ S ) $.
637494637509
trrelind.t $e |- ( ph -> T = ( R i^i S ) ) $.
637495637510
$( The intersection of transitive relations is a transitive relation.
637496-
(Contributed by Richard Penner, 24-Dec-2019.) $)
637511+
(Contributed by RP, 24-Dec-2019.) $)
637497637512
trrelind $p |- ( ph -> ( T o. T ) C_ T ) $=
637498637513
( cin ccom wss inss1 a1i trrelssd inss2 ssind coeq12d 3sstr4d ) ABCHZRIZR
637499637514
DDIDASBCABRRERBJABCKLZTMACRRFRCJABCNLZUAMOADRDRGGPGQ $.
@@ -637503,7 +637518,7 @@ Transitive relations (not to be confused with transitive classes).
637503637518
xpintrreld.r $e |- ( ph -> ( R o. R ) C_ R ) $.
637504637519
xpintrreld.s $e |- ( ph -> S = ( R i^i ( A X. B ) ) ) $.
637505637520
$( The intersection of a transitive relation with a cross product is a
637506-
transitve relation. (Contributed by Richard Penner, 24-Dec-2019.) $)
637521+
transitve relation. (Contributed by RP, 24-Dec-2019.) $)
637507637522
xpintrreld $p |- ( ph -> ( S o. S ) C_ S ) $=
637508637523
( cxp ccom wss xptrrel a1i trrelind ) ADBCHZEFNNINJABCKLGM $.
637509637524
$}
@@ -637512,7 +637527,7 @@ Transitive relations (not to be confused with transitive classes).
637512637527
restrreld.r $e |- ( ph -> ( R o. R ) C_ R ) $.
637513637528
restrreld.s $e |- ( ph -> S = ( R |` A ) ) $.
637514637529
$( The restriction of a transitive relation is a transitive relation.
637515-
(Contributed by Richard Penner, 24-Dec-2019.) $)
637530+
(Contributed by RP, 24-Dec-2019.) $)
637516637531
restrreld $p |- ( ph -> ( S o. S ) C_ S ) $=
637517637532
( cvv cres cxp cin df-res syl6eq xpintrreld ) ABGCDEADCBHCBGIJFCBKLM $.
637518637533
$}
@@ -637521,7 +637536,7 @@ Transitive relations (not to be confused with transitive classes).
637521637536
trrelsuperreldg.r $e |- ( ph -> Rel R ) $.
637522637537
trrelsuperreldg.s $e |- ( ph -> S = ( dom R X. ran R ) ) $.
637523637538
$( Concrete construction of a superclass of relation ` R ` which is a
637524-
transitive relation. (Contributed by Richard Penner, 25-Dec-2019.) $)
637539+
transitive relation. (Contributed by RP, 25-Dec-2019.) $)
637525637540
trrelsuperreldg $p |- ( ph -> ( R C_ S /\ ( S o. S ) C_ S ) ) $=
637526637541
( wss ccom cdm crn cxp relssdmrn syl sseqtr4d xptrrel a1i coeq12d 3sstr4d
637527637542
wrel jca ) ABCFCCGZCFABBHZBIZJZCABRBUCFDBKLEMAUCUCGZUCTCUDUCFAUAUBNOACUCC
@@ -637532,8 +637547,8 @@ Transitive relations (not to be confused with transitive classes).
637532637547
$d x y z $. $d y A $.
637533637548
trficl.a $e |- A = { z | ( z o. z ) C_ z } $.
637534637549
$( The class of all transitive relations has the finite intersection
637535-
property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof
637536-
shortened by Richard Penner, 3-Jan-2020.) $)
637550+
property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP,
637551+
3-Jan-2020.) $)
637537637552
trficl $p |- A. x e. A A. y e. A ( x i^i y ) e. A $=
637538637553
( cv ccom wss cin cvv vex inex1 wceq id coeq12d sseq12d weq trin2 cllem0
637539637554
) CFZTGZTHAFZBFZIZUDGZUDHUBUBGZUBHUCUCGZUCHABCUDJDEUBUCAKLTUDMZUAUETUDUHT
@@ -637542,7 +637557,7 @@ Transitive relations (not to be confused with transitive classes).
637542637557
$}
637543637558

637544637559
$( The converse of a transitive relation is a transitive relation.
637545-
(Contributed by Richard Penner, 25-Dec-2019.) $)
637560+
(Contributed by RP, 25-Dec-2019.) $)
637546637561
cnvtrrel $p |- ( ( S o. S ) C_ S <-> ( `' S o. `' S ) C_ `' S ) $=
637547637562
( ccom wss ccnv cnvss cnvco cnveqi cocnvcnv1 cocnvcnv2 3eqtri sseq1i biimpi
637548637563
eqtri cnvcnvss syl6ss syl impbii bitri ) AABZACZSDZADZCZUBUBBZUBCTUCSAEUCUA
@@ -639550,7 +639565,7 @@ adopting f( ` ph ` ) as ` if- ( ph , ps , ch ) ` would result in the
639550639565

639551639566
$( If the ` R ` -image of a class ` A ` is a subclass of ` B ` , then the
639552639567
restriction of ` R ` to ` A ` is a subset of the Cartesian product of
639553-
` A ` and ` B ` . (Contributed by Richard Penner, 24-Dec-2019.) $)
639568+
` A ` and ` B ` . (Contributed by RP, 24-Dec-2019.) $)
639554639569
rp-imass $p |- ( ( R " A ) C_ B <-> ( R |` A ) C_ ( A X. B ) ) $=
639555639570
( cima wss cres crn cdm cxp df-ima sseq1i dmres inss1 eqsstri biantrur wrel
639556639571
wa cin relres syl6ss relssdmrn xpss12 syl5ss dmss dmxpss rnss rnxpss impbii

0 commit comments

Comments
 (0)