@@ -833039,6 +833039,29 @@ additional condition (deduction form). See ~ ralbidc for a more
833039833039 wreu reu5 ) ACBDZAEZSAFZGHABIZHABJZGSAKHABQTUBUAUCABLABMNSAOHABRP $.
833040833040
833041833041
833042+ $(
833043+ -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
833044+ The universal class
833045+ -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
833046+ $)
833047+
833048+ ${
833049+ $d x y ph $. $d y ps $. $d x ch $. $d x A $. $d x y B $. $d x y C $.
833050+ reuxfr1dd.1 $e |- ( ( ph /\ y e. C ) -> A e. B ) $.
833051+ reuxfr1dd.2 $e |- ( ( ph /\ x e. B ) -> E! y e. C x = A ) $.
833052+ reuxfr1dd.3 $e |- ( ( ph /\ ( y e. C /\ x = A ) ) -> ( ps <-> ch ) ) $.
833053+ $( Transfer existential uniqueness from a variable ` x ` to another
833054+ variable ` y ` contained in expression ` A ` . Simplifies ~ reuxfr1d .
833055+ (Contributed by Zhi Wang, 20-Sep-2025.) $)
833056+ reuxfr1dd $p |- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) $=
833057+ ( wreu cv wceq wa wrex wcel syl anass bitrd biantrurd wb r19.41v pm5.32da
833058+ reurex 3bitr3g rexbidv2 bitr3id adantr reubidva wrmo reurmo reuxfrd ) ABD
833059+ GLDMZFNZCOZEHPZDGLCEHLABUQDGAUNGQZOZBUOEHPZBOZUQUSUTBUSUOEHLZUTJUOEHUERUA
833060+ AVAUQUBURVAUOBOZEHPAUQUOBEHUCAVCUPEHHAEMHQZUOOZBOVECOVDVCOVDUPOAVEBCKUDVD
833061+ UOBSVDUOCSUFUGUHUITUJACDEFGHIUSVBUOEHUKJUOEHULRUMT $.
833062+ $}
833063+
833064+
833042833065$(
833043833066-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
833044833067 The empty set
@@ -835527,7 +835550,8 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835527835550 n = ( ( ( X G y ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` y ) ) M ) ) $.
835528835551 upciclem1.y $e |- ( ph -> Y e. B ) $.
835529835552 upciclem1.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835530- $( Lemma for ~ upcic . (Contributed by Zhi Wang, 16-Sep-2025.) $)
835553+ $( Lemma for ~ upcic , ~ upeu , and ~ upeu2 . (Contributed by Zhi Wang,
835554+ 16-Sep-2025.) $)
835531835555 upciclem1 $p |- ( ph -> E! l e. ( X H Y )
835532835556 N = ( ( ( X G Y ) ` l )
835533835557 ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $=
@@ -835542,22 +835566,6 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835542835566 OVFUJUTUPVAVBVC $.
835543835567 $}
835544835568
835545- ${
835546- $d x y ph $. $d y ps $. $d x ch $. $d x A $. $d x y B $. $d x y C $.
835547- reuxfr1dd.1 $e |- ( ( ph /\ y e. C ) -> A e. B ) $.
835548- reuxfr1dd.2 $e |- ( ( ph /\ x e. B ) -> E! y e. C x = A ) $.
835549- reuxfr1dd.3 $e |- ( ( ph /\ ( y e. C /\ x = A ) ) -> ( ps <-> ch ) ) $.
835550- $( Transfer existential uniqueness from a variable ` x ` to another
835551- variable ` y ` contained in expression ` A ` . Simplifies ~ reuxfr1d .
835552- (Contributed by Zhi Wang, 20-Sep-2025.) $)
835553- reuxfr1dd $p |- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) $=
835554- ( wreu cv wceq wa wrex wcel syl anass bitrd biantrurd wb r19.41v pm5.32da
835555- reurex 3bitr3g rexbidv2 bitr3id adantr reubidva wrmo reurmo reuxfrd ) ABD
835556- GLDMZFNZCOZEHPZDGLCEHLABUQDGAUNGQZOZBUOEHPZBOZUQUSUTBUSUOEHLZUTJUOEHUERUA
835557- AVAUQUBURVAUOBOZEHPAUQUOBEHUCAVCUPEHHAEMHQZUOOZBOVECOVDVCOVDUPOAVEBCKUDVD
835558- UOBSVDUOCSUFUGUHUITUJACDEFGHIUSVBUOEHUKJUOEHULRUMT $.
835559- $}
835560-
835561835569 ${
835562835570 $d .x. k $. $d C k $. $d F k $. $d G k $. $d H k $. $d X k $.
835563835571 $d Y k $. $d Z k $. $d k ph $.
0 commit comments