Skip to content

Commit 25c0084

Browse files
committed
[add] isisod; [prove] upcic; [propose] upciclem2; [move] reueqdv to main
1 parent f43b615 commit 25c0084

File tree

2 files changed

+90
-14
lines changed

2 files changed

+90
-14
lines changed

changes-set.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -92,6 +92,7 @@ make a github issue.)
9292

9393
DONE:
9494
Date Old New Notes
95+
16-Sep-25 reueqdv [same] Moved from GG's mathbox to main set.mm
9596
11-Sep-25 cascl [same] revised - algSc may be non-injective
9697
24-Aug-25 elrab2w [same] Moved from SN's mathbox to main set.mm
9798
24-Aug-25 elab2gw [same] Moved from SN's mathbox to main set.mm

set.mm

Lines changed: 89 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -31921,6 +31921,16 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
3192131921
( wceq wreu reueq1 reubidv bitrd ) DEGZACDHACEHBCEHACDEILABCEFJK $.
3192231922
$}
3192331923

31924+
${
31925+
$d A x $. $d B x $.
31926+
reueqdv.1 $e |- ( ph -> A = B ) $.
31927+
$( Formula-building rule for restricted existential uniqueness quantifier.
31928+
Deduction form. (Contributed by GG, 1-Sep-2025.) $)
31929+
reueqdv $p |- ( ph -> ( E! x e. A ps <-> E! x e. B ps ) ) $=
31930+
( wceq wreu wb reueq1 syl ) ADEGBCDHBCEHIFBCDEJK $.
31931+
$( $j usage 'reueqdv' avoids 'ax-8' 'ax-10' 'ax-11' 'ax-12' 'ax-13'; $)
31932+
$}
31933+
3192431934
${
3192531935
rmoeq1f.1 $e |- F/_ x A $.
3192631936
rmoeq1f.2 $e |- F/_ x B $.
@@ -579686,16 +579696,6 @@ conditions of the Five Segment Axiom ( ~ ax5seg ). See ~ brofs and
579686579696
$( $j usage 'rmoeqbidv' avoids 'ax-10' 'ax-11' 'ax-12' 'ax-13'; $)
579687579697
$}
579688579698

579689-
${
579690-
$d A x $. $d B x $.
579691-
reueqdv.1 $e |- ( ph -> A = B ) $.
579692-
$( Formula-building rule for restricted existential uniqueness quantifier.
579693-
Deduction form. (Contributed by GG, 1-Sep-2025.) $)
579694-
reueqdv $p |- ( ph -> ( E! x e. A ps <-> E! x e. B ps ) ) $=
579695-
( wceq wreu wb reueq1 syl ) ADEGBCDHBCEHIFBCDEJK $.
579696-
$( $j usage 'reueqdv' avoids 'ax-8' 'ax-10' 'ax-11' 'ax-12' 'ax-13'; $)
579697-
$}
579698-
579699579699
${
579700579700
$d ph x $.
579701579701
reueqbidv.1 $e |- ( ph -> A = B ) $.
@@ -835438,6 +835438,38 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835438835438
$}
835439835439

835440835440

835441+
$(
835442+
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835443+
Sections, inverses, isomorphisms
835444+
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835445+
$)
835446+
835447+
${
835448+
$d .1. g $. $d .x. g $. $d B g $. $d C g $. $d F g $. $d G g $.
835449+
$d H g $. $d I g $. $d X g $. $d Y g $. $d g ph $.
835450+
isisod.b $e |- B = ( Base ` C ) $.
835451+
isisod.h $e |- H = ( Hom ` C ) $.
835452+
isisod.o $e |- .x. = ( comp ` C ) $.
835453+
isisod.i $e |- I = ( Iso ` C ) $.
835454+
isisod.1 $e |- .1. = ( Id ` C ) $.
835455+
isisod.c $e |- ( ph -> C e. Cat ) $.
835456+
isisod.x $e |- ( ph -> X e. B ) $.
835457+
isisod.y $e |- ( ph -> Y e. B ) $.
835458+
isisod.f $e |- ( ph -> F e. ( X H Y ) ) $.
835459+
isisod.g $e |- ( ph -> G e. ( Y H X ) ) $.
835460+
isisod.gf $e |- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) $.
835461+
isisod.fg $e |- ( ph -> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) $.
835462+
$( The predicate "is an isomorphism" (deduction form). (Contributed by Zhi
835463+
Wang, 16-Sep-2025.) $)
835464+
isisod $p |- ( ph -> F e. ( X I Y ) ) $=
835465+
( vg co wcel cv cop cfv wceq wa wrex oveq1d eqeq1d oveq2d anbi12d rspcedv
835466+
simpr mp2and cco oveqi dfiso2 mpbird ) AFJKIUEUFUDUGZFJKUHZJDUEZUEZJEUIZU
835467+
JZFVDKJUHZKDUEZUEZKEUIZUJZUKZUDKJHUEZULZAGFVFUEZVHUJZFGVKUEZVMUJZVQUBUCAV
835468+
OVSWAUKUDGVPUAAVDGUJZUKZVIVSVNWAWCVGVRVHWCVDGFVFAWBURZUMUNWCVLVTVMWCVDGFV
835469+
KWDUOUNUPUQUSABCEUDFHIVKJKVFLMQORSTPDCUTUIZVEJNVADWEVJKNVAVBVC $.
835470+
$}
835471+
835472+
835441835473
$(
835442835474
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835443835475
Functors
@@ -835487,6 +835519,38 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835487835519
$}
835488835520

835489835521
${
835522+
upciclem2.b $e |- B = ( Base ` D ) $.
835523+
upciclem2.c $e |- C = ( Base ` E ) $.
835524+
upciclem2.h $e |- H = ( Hom ` D ) $.
835525+
upciclem2.j $e |- J = ( Hom ` E ) $.
835526+
upciclem2.od $e |- .x. = ( comp ` D ) $.
835527+
upciclem2.o $e |- O = ( comp ` E ) $.
835528+
upciclem2.f $e |- ( ph -> F ( D Func E ) G ) $.
835529+
upciclem2.x $e |- ( ph -> X e. B ) $.
835530+
upciclem2.y $e |- ( ph -> Y e. B ) $.
835531+
upciclem2.z $e |- ( ph -> Z e. C ) $.
835532+
upciclem2.k $e |- ( ph -> K e. ( X H Y ) ) $.
835533+
upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835534+
upciclem2.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835535+
upciclem2.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835536+
upciclem2.mn $e |- ( ph -> M = ( ( G ` L )
835537+
( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835538+
upciclem2.nm $e |- ( ph -> N = ( ( G ` K )
835539+
( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835540+
$( Lemma for ~ upcic . (Contributed by Zhi Wang, 16-Sep-2025.) $)
835541+
upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835542+
= ( ( Id ` D ) ` X ) ) $=
835543+
( ) ? $.
835544+
$}
835545+
835546+
${
835547+
$d B p q v $. $d B p q w $. $d D p q $. $d F f k p q w $.
835548+
$d F g l p q v $. $d G f k p q w $. $d G g l p q v $. $d H f k p q w $.
835549+
$d H g l p q v $. $d J f p q w $. $d J g p q v $. $d M f k w $.
835550+
$d M g l $. $d M p q $. $d N f k $. $d N g l v $. $d N p q $.
835551+
$d O f k p q w $. $d O g l p q v $. $d X f k p q w $. $d X g l p q v $.
835552+
$d Y f k p q w $. $d Y g l p q v $. $d Z f k p q w $. $d Z g l p q v $.
835553+
$d p ph q $.
835490835554
upcic.b $e |- B = ( Base ` D ) $.
835491835555
upcic.c $e |- C = ( Base ` E ) $.
835492835556
upcic.h $e |- H = ( Hom ` D ) $.
@@ -835500,12 +835564,23 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835500835564
f = ( ( G ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835501835565
upcic.y $e |- ( ph -> Y e. B ) $.
835502835566
upcic.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835503-
upcic.2 $e |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( Y H w )
835504-
f = ( ( G ` k ) ( <. Z , ( F ` Y ) >. O ( F ` w ) ) N ) ) $.
835567+
upcic.2 $e |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v )
835568+
g = ( ( G ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) $.
835505835569
$( A universal property defines an object up to isomorphism given its
835506-
existence. (Contributed by Zhi Wang, XX-Sep-2025.) $)
835570+
existence. (Contributed by Zhi Wang, 16-Sep-2025.) $)
835507835571
upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835508-
( ) ? $.
835572+
( vp vq cv cfv cop co wceq ccic wbr wreu wrex upciclem1 reurex wcel simpl
835573+
syl wa 3syl ciso eqid cfunc ccat simpll df-br sylib funcrcl 4syl ad2antrr
835574+
cco ccid simplrl simprl simprr simplrr upciclem2 isisod brcici rexlimddv
835575+
) APUOUQZLUROTRKURZUSSKURZQUTUTVAZRSFVBURVCZUORSMUTZAWPUOWRVDWPUOWRVEABDI
835576+
GKLMNOPQRSTUOUKULUMVFWPUOWRVGVJAWMWRVHZWPVKZVKZOUPUQZLURPTWOUSWNQUTUTVAZW
835577+
QUPSRMUTZXAAXCUPXDVDXCUPXDVEAWTVIACDUAHKLMNPOQSRTUPUNUIUJVFXCUPXDVGVLXAXB
835578+
XDVHZXCVKZVKZDFWMFVMURZRSXHVNZUBXGAKLUSZFJVOUTZVHZFVPVHZJVPVHZVKXMAWTXFVQ
835579+
AKLXKVCZXLUGKLXKVRVSFJXJVTXMXNVIWAZARDVHWTXFUIWBZASDVHWTXFULWBZXGDFFWCURZ
835580+
FWDURZWMXBMXHRSUBUDXSVNZXIXTVNXPXQXRAWSWPXFWEZXAXEXCWFZXGDEFXSJKLMNWMXBOP
835581+
QRSTUBUCUDUEYAUFAXOWTXFUGWBZXQXRATEVHWTXFUHWBZYBYCAOTWNNUTVHWTXFUJWBZAPTW
835582+
ONUTVHWTXFUMWBZXAXEXCWGZAWSWPXFWHZWIXGDEFXSJKLMNXBWMPOQSRTUBUCUDUEYAUFYDX
835583+
RXQYEYCYBYGYFYIYHWIWJWKWLWL $.
835509835584
$}
835510835585

835511835586

0 commit comments

Comments
 (0)