@@ -31921,6 +31921,16 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
31921
31921
( wceq wreu reueq1 reubidv bitrd ) DEGZACDHACEHBCEHACDEILABCEFJK $.
31922
31922
$}
31923
31923
31924
+ ${
31925
+ $d A x $. $d B x $.
31926
+ reueqdv.1 $e |- ( ph -> A = B ) $.
31927
+ $( Formula-building rule for restricted existential uniqueness quantifier.
31928
+ Deduction form. (Contributed by GG, 1-Sep-2025.) $)
31929
+ reueqdv $p |- ( ph -> ( E! x e. A ps <-> E! x e. B ps ) ) $=
31930
+ ( wceq wreu wb reueq1 syl ) ADEGBCDHBCEHIFBCDEJK $.
31931
+ $( $j usage 'reueqdv' avoids 'ax-8' 'ax-10' 'ax-11' 'ax-12' 'ax-13'; $)
31932
+ $}
31933
+
31924
31934
${
31925
31935
rmoeq1f.1 $e |- F/_ x A $.
31926
31936
rmoeq1f.2 $e |- F/_ x B $.
@@ -579686,16 +579696,6 @@ conditions of the Five Segment Axiom ( ~ ax5seg ). See ~ brofs and
579686
579696
$( $j usage 'rmoeqbidv' avoids 'ax-10' 'ax-11' 'ax-12' 'ax-13'; $)
579687
579697
$}
579688
579698
579689
- ${
579690
- $d A x $. $d B x $.
579691
- reueqdv.1 $e |- ( ph -> A = B ) $.
579692
- $( Formula-building rule for restricted existential uniqueness quantifier.
579693
- Deduction form. (Contributed by GG, 1-Sep-2025.) $)
579694
- reueqdv $p |- ( ph -> ( E! x e. A ps <-> E! x e. B ps ) ) $=
579695
- ( wceq wreu wb reueq1 syl ) ADEGBCDHBCEHIFBCDEJK $.
579696
- $( $j usage 'reueqdv' avoids 'ax-8' 'ax-10' 'ax-11' 'ax-12' 'ax-13'; $)
579697
- $}
579698
-
579699
579699
${
579700
579700
$d ph x $.
579701
579701
reueqbidv.1 $e |- ( ph -> A = B ) $.
@@ -835438,6 +835438,38 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835438
835438
$}
835439
835439
835440
835440
835441
+ $(
835442
+ -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835443
+ Sections, inverses, isomorphisms
835444
+ -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835445
+ $)
835446
+
835447
+ ${
835448
+ $d .1. g $. $d .x. g $. $d B g $. $d C g $. $d F g $. $d G g $.
835449
+ $d H g $. $d I g $. $d X g $. $d Y g $. $d g ph $.
835450
+ isisod.b $e |- B = ( Base ` C ) $.
835451
+ isisod.h $e |- H = ( Hom ` C ) $.
835452
+ isisod.o $e |- .x. = ( comp ` C ) $.
835453
+ isisod.i $e |- I = ( Iso ` C ) $.
835454
+ isisod.1 $e |- .1. = ( Id ` C ) $.
835455
+ isisod.c $e |- ( ph -> C e. Cat ) $.
835456
+ isisod.x $e |- ( ph -> X e. B ) $.
835457
+ isisod.y $e |- ( ph -> Y e. B ) $.
835458
+ isisod.f $e |- ( ph -> F e. ( X H Y ) ) $.
835459
+ isisod.g $e |- ( ph -> G e. ( Y H X ) ) $.
835460
+ isisod.gf $e |- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) $.
835461
+ isisod.fg $e |- ( ph -> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) $.
835462
+ $( The predicate "is an isomorphism" (deduction form). (Contributed by Zhi
835463
+ Wang, 16-Sep-2025.) $)
835464
+ isisod $p |- ( ph -> F e. ( X I Y ) ) $=
835465
+ ( vg co wcel cv cop cfv wceq wa wrex oveq1d eqeq1d oveq2d anbi12d rspcedv
835466
+ simpr mp2and cco oveqi dfiso2 mpbird ) AFJKIUEUFUDUGZFJKUHZJDUEZUEZJEUIZU
835467
+ JZFVDKJUHZKDUEZUEZKEUIZUJZUKZUDKJHUEZULZAGFVFUEZVHUJZFGVKUEZVMUJZVQUBUCAV
835468
+ OVSWAUKUDGVPUAAVDGUJZUKZVIVSVNWAWCVGVRVHWCVDGFVFAWBURZUMUNWCVLVTVMWCVDGFV
835469
+ KWDUOUNUPUQUSABCEUDFHIVKJKVFLMQORSTPDCUTUIZVEJNVADWEVJKNVAVBVC $.
835470
+ $}
835471
+
835472
+
835441
835473
$(
835442
835474
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835443
835475
Functors
@@ -835487,6 +835519,38 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835487
835519
$}
835488
835520
835489
835521
${
835522
+ upciclem2.b $e |- B = ( Base ` D ) $.
835523
+ upciclem2.c $e |- C = ( Base ` E ) $.
835524
+ upciclem2.h $e |- H = ( Hom ` D ) $.
835525
+ upciclem2.j $e |- J = ( Hom ` E ) $.
835526
+ upciclem2.od $e |- .x. = ( comp ` D ) $.
835527
+ upciclem2.o $e |- O = ( comp ` E ) $.
835528
+ upciclem2.f $e |- ( ph -> F ( D Func E ) G ) $.
835529
+ upciclem2.x $e |- ( ph -> X e. B ) $.
835530
+ upciclem2.y $e |- ( ph -> Y e. B ) $.
835531
+ upciclem2.z $e |- ( ph -> Z e. C ) $.
835532
+ upciclem2.k $e |- ( ph -> K e. ( X H Y ) ) $.
835533
+ upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835534
+ upciclem2.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835535
+ upciclem2.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835536
+ upciclem2.mn $e |- ( ph -> M = ( ( G ` L )
835537
+ ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835538
+ upciclem2.nm $e |- ( ph -> N = ( ( G ` K )
835539
+ ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835540
+ $( Lemma for ~ upcic . (Contributed by Zhi Wang, 16-Sep-2025.) $)
835541
+ upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835542
+ = ( ( Id ` D ) ` X ) ) $=
835543
+ ( ) ? $.
835544
+ $}
835545
+
835546
+ ${
835547
+ $d B p q v $. $d B p q w $. $d D p q $. $d F f k p q w $.
835548
+ $d F g l p q v $. $d G f k p q w $. $d G g l p q v $. $d H f k p q w $.
835549
+ $d H g l p q v $. $d J f p q w $. $d J g p q v $. $d M f k w $.
835550
+ $d M g l $. $d M p q $. $d N f k $. $d N g l v $. $d N p q $.
835551
+ $d O f k p q w $. $d O g l p q v $. $d X f k p q w $. $d X g l p q v $.
835552
+ $d Y f k p q w $. $d Y g l p q v $. $d Z f k p q w $. $d Z g l p q v $.
835553
+ $d p ph q $.
835490
835554
upcic.b $e |- B = ( Base ` D ) $.
835491
835555
upcic.c $e |- C = ( Base ` E ) $.
835492
835556
upcic.h $e |- H = ( Hom ` D ) $.
@@ -835500,12 +835564,23 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835500
835564
f = ( ( G ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835501
835565
upcic.y $e |- ( ph -> Y e. B ) $.
835502
835566
upcic.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835503
- upcic.2 $e |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( Y H w )
835504
- f = ( ( G ` k ) ( <. Z , ( F ` Y ) >. O ( F ` w ) ) N ) ) $.
835567
+ upcic.2 $e |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v )
835568
+ g = ( ( G ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) $.
835505
835569
$( A universal property defines an object up to isomorphism given its
835506
- existence. (Contributed by Zhi Wang, XX -Sep-2025.) $)
835570
+ existence. (Contributed by Zhi Wang, 16 -Sep-2025.) $)
835507
835571
upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835508
- ( ) ? $.
835572
+ ( vp vq cv cfv cop co wceq ccic wbr wreu wrex upciclem1 reurex wcel simpl
835573
+ syl wa 3syl ciso eqid cfunc ccat simpll df-br sylib funcrcl 4syl ad2antrr
835574
+ cco ccid simplrl simprl simprr simplrr upciclem2 isisod brcici rexlimddv
835575
+ ) APUOUQZLUROTRKURZUSSKURZQUTUTVAZRSFVBURVCZUORSMUTZAWPUOWRVDWPUOWRVEABDI
835576
+ GKLMNOPQRSTUOUKULUMVFWPUOWRVGVJAWMWRVHZWPVKZVKZOUPUQZLURPTWOUSWNQUTUTVAZW
835577
+ QUPSRMUTZXAAXCUPXDVDXCUPXDVEAWTVIACDUAHKLMNPOQSRTUPUNUIUJVFXCUPXDVGVLXAXB
835578
+ XDVHZXCVKZVKZDFWMFVMURZRSXHVNZUBXGAKLUSZFJVOUTZVHZFVPVHZJVPVHZVKXMAWTXFVQ
835579
+ AKLXKVCZXLUGKLXKVRVSFJXJVTXMXNVIWAZARDVHWTXFUIWBZASDVHWTXFULWBZXGDFFWCURZ
835580
+ FWDURZWMXBMXHRSUBUDXSVNZXIXTVNXPXQXRAWSWPXFWEZXAXEXCWFZXGDEFXSJKLMNWMXBOP
835581
+ QRSTUBUCUDUEYAUFAXOWTXFUGWBZXQXRATEVHWTXFUHWBZYBYCAOTWNNUTVHWTXFUJWBZAPTW
835582
+ ONUTVHWTXFUMWBZXAXEXCWGZAWSWPXFWHZWIXGDEFXSJKLMNXBWMPOQSRTUBUCUDUEYAUFYDX
835583
+ RXQYEYCYBYGYFYIYHWIWJWKWLWL $.
835509
835584
$}
835510
835585
835511
835586
0 commit comments