@@ -835481,14 +835481,14 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835481
835481
$( Reverse closure for a functor. (Contributed by Zhi Wang,
835482
835482
17-Sep-2025.) $)
835483
835483
funcrcl2 $p |- ( ph -> D e. Cat ) $=
835484
- ( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simpld ) AB
835485
- GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835484
+ ( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simpld ) ABGHZC
835485
+ GHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835486
835486
835487
835487
$( Reverse closure for a functor. (Contributed by Zhi Wang,
835488
835488
17-Sep-2025.) $)
835489
835489
funcrcl3 $p |- ( ph -> E e. Cat ) $=
835490
- ( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simprd ) AB
835491
- GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835490
+ ( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simprd ) ABGHZC
835491
+ GHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835492
835492
$}
835493
835493
835494
835494
${
@@ -835536,90 +835536,76 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835536
835536
$}
835537
835537
835538
835538
${
835539
- $d .x. p $. $d B w $. $d D p $. $d F f k w $. $d F p $.
835540
- $d G f k w $. $d G p $. $d H f k w $. $d H p $. $d J f w $.
835541
- $d K p $. $d L p $. $d M f k w $. $d M p $. $d O f k w $.
835542
- $d O p $. $d X f k w $. $d X p $. $d Y p $.
835543
- $d Z f k w $. $d Z p $.
835544
- upciclem2.b $e |- B = ( Base ` D ) $.
835545
- upciclem2.c $e |- C = ( Base ` E ) $.
835546
- upciclem2.h $e |- H = ( Hom ` D ) $.
835547
- upciclem2.j $e |- J = ( Hom ` E ) $.
835548
- upciclem2.od $e |- .x. = ( comp ` D ) $.
835549
- upciclem2.o $e |- O = ( comp ` E ) $.
835550
- upciclem2.f $e |- ( ph -> F ( D Func E ) G ) $.
835551
- upciclem2.x $e |- ( ph -> X e. B ) $.
835552
- upciclem2.y $e |- ( ph -> Y e. B ) $.
835553
- upciclem2.z $e |- ( ph -> Z e. C ) $.
835554
- upciclem2.k $e |- ( ph -> K e. ( X H Y ) ) $.
835555
- upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835556
- upciclem2.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835557
- upciclem2.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835558
- upciclem2.1 $e |- ( ph -> A. w e. B
835559
- A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w )
835560
- f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835561
- upciclem2.mn $e |- ( ph -> M = ( ( ( Y G X ) ` L )
835562
- ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835563
- upciclem2.nm $e |- ( ph -> N = ( ( ( X G Y ) ` K )
835564
- ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835565
- $( Lemma for ~ upcic . (Contributed by Zhi Wang, 17-Sep-2025.) $)
835566
- upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835567
- = ( ( Id ` D ) ` X ) ) $=
835568
- ( vp cv co cfv wceq ccid fveq2 oveq1d eqeq2d upciclem1 funcrcl2
835569
- cop catcocl eqid funcrcl3 funcf1 ffvelcdmd funcf2 catass funcco
835570
- catidcl oveq2d eqtrd 3eqtr4rd funcid catlid eqtr2d reu2eqd ) AP
835571
- USUTZSSKVAZVBZPUASJVBZVJZWJRVAZVAZVCPONSTVJSFVAVAZWHVBZPWLVAZVC
835572
- PSEVDVBZVBZWHVBZPWLVAZVCUSSSLVAWNWRWGWNVCZWMWPPXAWIWOPWLWGWNWHV
835573
- EVFVGWGWRVCZWMWTPXBWIWSPWLWGWRWHVEVFVGABCHGJKLMPPRSSUAUSUPUIUNV
835574
- HACEFNOLSTSUBUDUFAEIJKUHVIZUIUJUIULUMVKACEWQLSUBUDWQVLZXCUIVSAO
835575
- TSKVAZVBZNSTKVAZVBZWJTJVBZVJWJRVAVAZPWLVAXFXHPWKXIRVAVAZUAXIVJW
835576
- JRVAZVAZWPPADIRPXHMXFWJUAWJXIUCUEUGAEIJKUHVMZUKACDSJACDEIJKUBUC
835577
- UHVNZUIVOZACDTJXOUJVOUNASTLVAWJXIMVANXGACEIJKLMSTUBUDUEUHUIUJVP
835578
- ULVOXPATSLVAXIWJMVAOXEACEIJKLMTSUBUDUEUHUJUIVPUMVOVQAWOXJPWLACE
835579
- FIJKLNORSTSUBUDUFUGUHUIUJUIULUMVRVFAPXFQXLVAXMUQAQXKXFXLURVTWAW
835580
- BAWTWJIVDVBZVBZPWLVAPAWSXRPWLACEWQIJKXQSUBXDXQVLZUHUIWCVFADIRXQ
835581
- PMUAWJUCUEXSXNUKUGXPUNWDWEWF $.
835582
- $}
835583
-
835584
- ${
835585
- $d B p q v $. $d B p q w $. $d D p q $. $d F f k p q w $.
835586
- $d F g l p q v $. $d G f k p q w $. $d G g l p q v $. $d H f k p q w $.
835587
- $d H g l p q v $. $d J f p q w $. $d J g p q v $. $d M f k w $.
835588
- $d M g l $. $d M p q $. $d N f k $. $d N g l v $. $d N p q $.
835589
- $d O f k p q w $. $d O g l p q v $. $d X f k p q w $. $d X g l p q v $.
835590
- $d Y f k p q w $. $d Y g l p q v $. $d Z f k p q w $. $d Z g l p q v $.
835591
- $d p ph q $.
835592
835539
upcic.b $e |- B = ( Base ` D ) $.
835593
835540
upcic.c $e |- C = ( Base ` E ) $.
835594
835541
upcic.h $e |- H = ( Hom ` D ) $.
835595
835542
upcic.j $e |- J = ( Hom ` E ) $.
835596
835543
upcic.o $e |- O = ( comp ` E ) $.
835597
835544
upcic.f $e |- ( ph -> F ( D Func E ) G ) $.
835598
- upcic.z $e |- ( ph -> Z e. C ) $.
835599
835545
upcic.x $e |- ( ph -> X e. B ) $.
835546
+ upcic.y $e |- ( ph -> Y e. B ) $.
835547
+ upcic.z $e |- ( ph -> Z e. C ) $.
835600
835548
upcic.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835601
835549
upcic.1 $e |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w )
835602
835550
f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835603
- upcic.y $e |- ( ph -> Y e. B ) $.
835604
- upcic.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835605
- upcic.2 $e |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v )
835551
+
835552
+ ${
835553
+ $d .x. p $. $d B p w $. $d D p $. $d F f p k w $. $d G f p k w $.
835554
+ $d H f p k w $. $d J f p w $. $d K p $. $d L p $. $d M f p k w $.
835555
+ $d O f p k w $. $d X f p k w $. $d Y p $. $d Z f p k w $.
835556
+ upciclem2.od $e |- .x. = ( comp ` D ) $.
835557
+ upciclem2.k $e |- ( ph -> K e. ( X H Y ) ) $.
835558
+ upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835559
+ upciclem2.mn $e |- ( ph -> M = ( ( ( Y G X ) ` L )
835560
+ ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835561
+ upciclem2.nm $e |- ( ph -> N = ( ( ( X G Y ) ` K )
835562
+ ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835563
+ $( Lemma for ~ upcic . (Contributed by Zhi Wang, 17-Sep-2025.) $)
835564
+ upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835565
+ = ( ( Id ` D ) ` X ) ) $=
835566
+ ( vp cv co cfv wceq ccid fveq2 oveq1d eqeq2d upciclem1 funcrcl2 catcocl
835567
+ cop catidcl funcrcl3 funcf1 ffvelcdmd funcf2 catass funcco oveq2d eqtrd
835568
+ eqid 3eqtr4rd funcid catlid eqtr2d reu2eqd ) APURUSZSSKUTZVAZPUASJVAZVJ
835569
+ ZWIRUTZUTZVBPONSTVJSFUTUTZWGVAZPWKUTZVBPSEVCVAZVAZWGVAZPWKUTZVBURSSLUTW
835570
+ MWQWFWMVBZWLWOPWTWHWNPWKWFWMWGVDVEVFWFWQVBZWLWSPXAWHWRPWKWFWQWGVDVEVFAB
835571
+ CHGJKLMPPRSSUAURULUHUKVGACEFNOLSTSUBUDUMAEIJKUGVHZUHUIUHUNUOVIACEWPLSUB
835572
+ UDWPVTZXBUHVKAOTSKUTZVAZNSTKUTZVAZWITJVAZVJWIRUTUTZPWKUTXEXGPWJXHRUTUTZ
835573
+ UAXHVJWIRUTZUTZWOPADIRPXGMXEWIUAWIXHUCUEUFAEIJKUGVLZUJACDSJACDEIJKUBUCU
835574
+ GVMZUHVNZACDTJXNUIVNUKASTLUTWIXHMUTNXFACEIJKLMSTUBUDUEUGUHUIVOUNVNXOATS
835575
+ LUTXHWIMUTOXDACEIJKLMTSUBUDUEUGUIUHVOUOVNVPAWNXIPWKACEFIJKLNORSTSUBUDUM
835576
+ UFUGUHUIUHUNUOVQVEAPXEQXKUTXLUPAQXJXEXKUQVRVSWAAWSWIIVCVAZVAZPWKUTPAWRX
835577
+ QPWKACEWPIJKXPSUBXCXPVTZUGUHWBVEADIRXPPMUAWIUCUEXRXMUJUFXOUKWCWDWE $.
835578
+ $}
835579
+
835580
+ ${
835581
+ $d B p q v $. $d B p q w $. $d D p q $. $d F f k p q w $.
835582
+ $d F g l p q v $. $d G f k p q w $. $d G g l p q v $.
835583
+ $d H f k p q w $. $d H g l p q v $. $d J f p q w $. $d J g p q v $.
835584
+ $d M f k w $. $d M g l $. $d M p q $. $d N f k $. $d N g l v $.
835585
+ $d N p q $. $d O f k p q w $. $d O g l p q v $. $d X f k p q w $.
835586
+ $d X g l p q v $. $d Y f k p q w $. $d Y g l p q v $.
835587
+ $d Z f k p q w $. $d Z g l p q v $. $d p ph q $.
835588
+ upcic.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835589
+ upcic.2 $e |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) )
835590
+ E! l e. ( Y H v )
835606
835591
g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) $.
835607
- $( A universal property defines an object up to isomorphism given its
835608
- existence. (Contributed by Zhi Wang, 16-Sep-2025.) $)
835609
- upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835610
- ( vp vq cv co cfv cop wceq ccic wbr wreu wrex upciclem1 reurex wcel simpl
835611
- syl 3syl ciso eqid cfunc ad2antrr funcrcl2 cco ccid simplrl simprl simprr
835612
- wa wral simplrr upciclem2 isisod brcici rexlimddv ) APUOUQZRSLURUSOTRKUSZ
835613
- UTZSKUSZQURURVAZRSFVBUSVCZUORSMURZAWMUOWOVDWMUOWOVEABDIGKLMNOPQRSTUOUKULU
835614
- MVFWMUOWOVGVJAWIWOVHZWMWBZWBZOUPUQZSRLURUSPTWLUTZWJQURURVAZWNUPSRMURZWRAX
835615
- AUPXBVDXAUPXBVEAWQVIACDUAHKLMNPOQSRTUPUNUIUJVFXAUPXBVGVKWRWSXBVHZXAWBZWBZ
835616
- DFWIFVLUSZRSXFVMZUBXEFJKLAKLFJVNURVCWQXDUGVOZVPZARDVHWQXDUIVOZASDVHWQXDUL
835617
- VOZXEDFFVQUSZFVRUSZWIWSMXFRSUBUDXLVMZXGXMVMXIXJXKAWPWMXDVSZWRXCXAVTZXEBDE
835618
- FXLGIJKLMNWIWSOPQRSTUBUCUDUEXNUFXHXJXKATEVHWQXDUHVOZXOXPAOTWJNURVHWQXDUJV
835619
- OZAPTWLNURVHWQXDUMVOZAGUQIUQRBUQZLURUSOWKXTKUSZQURURVAIRXTMURVDGTYANURWCB
835620
- DWCWQXDUKVOWRXCXAWAZAWPWMXDWDZWEXECDEFXLHUAJKLMNWSWIPOQSRTUBUCUDUEXNUFXHX
835621
- KXJXQXPXOXSXRAHUQUAUQSCUQZLURUSPWTYDKUSZQURURVAUASYDMURVDHTYENURWCCDWCWQX
835622
- DUNVOYCYBWEWFWGWHWH $.
835592
+ $( A universal property defines an object up to isomorphism given its
835593
+ existence. (Contributed by Zhi Wang, 17-Sep-2025.) $)
835594
+ upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835595
+ ( vp vq cv co cfv cop wceq ccic wbr wreu wrex upciclem1 reurex syl wcel
835596
+ wa simpl 3syl ciso eqid cfunc ad2antrr funcrcl2 cco ccid simplrl simprl
835597
+ wral simprr simplrr upciclem2 isisod brcici rexlimddv ) APUOUQZRSLURUSO
835598
+ TRKUSZUTZSKUSZQURURVAZRSFVBUSVCZUORSMURZAWMUOWOVDWMUOWOVEABDIGKLMNOPQRS
835599
+ TUOULUIUMVFWMUOWOVGVHAWIWOVIZWMVJZVJZOUPUQZSRLURUSPTWLUTZWJQURURVAZWNUP
835600
+ SRMURZWRAXAUPXBVDXAUPXBVEAWQVKACDUAHKLMNPOQSRTUPUNUHUKVFXAUPXBVGVLWRWSX
835601
+ BVIZXAVJZVJZDFWIFVMUSZRSXFVNZUBXEFJKLAKLFJVOURVCWQXDUGVPZVQZARDVIWQXDUH
835602
+ VPZASDVIWQXDUIVPZXEDFFVRUSZFVSUSZWIWSMXFRSUBUDXLVNZXGXMVNXIXJXKAWPWMXDV
835603
+ TZWRXCXAWAZXEBDEFXLGIJKLMNWIWSOPQRSTUBUCUDUEUFXHXJXKATEVIWQXDUJVPZAOTWJ
835604
+ NURVIWQXDUKVPAGUQIUQRBUQZLURUSOWKXRKUSZQURURVAIRXRMURVDGTXSNURWBBDWBWQX
835605
+ DULVPXNXOXPWRXCXAWCZAWPWMXDWDZWEXECDEFXLHUAJKLMNWSWIPOQSRTUBUCUDUEUFXHX
835606
+ KXJXQAPTWLNURVIWQXDUMVPAHUQUAUQSCUQZLURUSPWTYBKUSZQURURVAUASYBMURVDHTYC
835607
+ NURWBCDWBWQXDUNVPXNXPXOYAXTWEWFWGWHWH $.
835608
+ $}
835623
835609
$}
835624
835610
835625
835611
0 commit comments