Skip to content

Commit 281e9e2

Browse files
committed
[remove] upciclem2.n; [reformat] hypotheses; [trivial] formatting
1 parent 99ca29c commit 281e9e2

File tree

1 file changed

+63
-77
lines changed

1 file changed

+63
-77
lines changed

set.mm

Lines changed: 63 additions & 77 deletions
Original file line numberDiff line numberDiff line change
@@ -835481,14 +835481,14 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835481835481
$( Reverse closure for a functor. (Contributed by Zhi Wang,
835482835482
17-Sep-2025.) $)
835483835483
funcrcl2 $p |- ( ph -> D e. Cat ) $=
835484-
( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simpld ) AB
835485-
GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835484+
( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simpld ) ABGHZC
835485+
GHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835486835486

835487835487
$( Reverse closure for a functor. (Contributed by Zhi Wang,
835488835488
17-Sep-2025.) $)
835489835489
funcrcl3 $p |- ( ph -> E e. Cat ) $=
835490-
( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simprd ) AB
835491-
GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835490+
( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simprd ) ABGHZC
835491+
GHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835492835492
$}
835493835493

835494835494
${
@@ -835536,90 +835536,76 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835536835536
$}
835537835537

835538835538
${
835539-
$d .x. p $. $d B w $. $d D p $. $d F f k w $. $d F p $.
835540-
$d G f k w $. $d G p $. $d H f k w $. $d H p $. $d J f w $.
835541-
$d K p $. $d L p $. $d M f k w $. $d M p $. $d O f k w $.
835542-
$d O p $. $d X f k w $. $d X p $. $d Y p $.
835543-
$d Z f k w $. $d Z p $.
835544-
upciclem2.b $e |- B = ( Base ` D ) $.
835545-
upciclem2.c $e |- C = ( Base ` E ) $.
835546-
upciclem2.h $e |- H = ( Hom ` D ) $.
835547-
upciclem2.j $e |- J = ( Hom ` E ) $.
835548-
upciclem2.od $e |- .x. = ( comp ` D ) $.
835549-
upciclem2.o $e |- O = ( comp ` E ) $.
835550-
upciclem2.f $e |- ( ph -> F ( D Func E ) G ) $.
835551-
upciclem2.x $e |- ( ph -> X e. B ) $.
835552-
upciclem2.y $e |- ( ph -> Y e. B ) $.
835553-
upciclem2.z $e |- ( ph -> Z e. C ) $.
835554-
upciclem2.k $e |- ( ph -> K e. ( X H Y ) ) $.
835555-
upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835556-
upciclem2.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835557-
upciclem2.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835558-
upciclem2.1 $e |- ( ph -> A. w e. B
835559-
A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w )
835560-
f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835561-
upciclem2.mn $e |- ( ph -> M = ( ( ( Y G X ) ` L )
835562-
( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835563-
upciclem2.nm $e |- ( ph -> N = ( ( ( X G Y ) ` K )
835564-
( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835565-
$( Lemma for ~ upcic . (Contributed by Zhi Wang, 17-Sep-2025.) $)
835566-
upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835567-
= ( ( Id ` D ) ` X ) ) $=
835568-
( vp cv co cfv wceq ccid fveq2 oveq1d eqeq2d upciclem1 funcrcl2
835569-
cop catcocl eqid funcrcl3 funcf1 ffvelcdmd funcf2 catass funcco
835570-
catidcl oveq2d eqtrd 3eqtr4rd funcid catlid eqtr2d reu2eqd ) AP
835571-
USUTZSSKVAZVBZPUASJVBZVJZWJRVAZVAZVCPONSTVJSFVAVAZWHVBZPWLVAZVC
835572-
PSEVDVBZVBZWHVBZPWLVAZVCUSSSLVAWNWRWGWNVCZWMWPPXAWIWOPWLWGWNWHV
835573-
EVFVGWGWRVCZWMWTPXBWIWSPWLWGWRWHVEVFVGABCHGJKLMPPRSSUAUSUPUIUNV
835574-
HACEFNOLSTSUBUDUFAEIJKUHVIZUIUJUIULUMVKACEWQLSUBUDWQVLZXCUIVSAO
835575-
TSKVAZVBZNSTKVAZVBZWJTJVBZVJWJRVAVAZPWLVAXFXHPWKXIRVAVAZUAXIVJW
835576-
JRVAZVAZWPPADIRPXHMXFWJUAWJXIUCUEUGAEIJKUHVMZUKACDSJACDEIJKUBUC
835577-
UHVNZUIVOZACDTJXOUJVOUNASTLVAWJXIMVANXGACEIJKLMSTUBUDUEUHUIUJVP
835578-
ULVOXPATSLVAXIWJMVAOXEACEIJKLMTSUBUDUEUHUJUIVPUMVOVQAWOXJPWLACE
835579-
FIJKLNORSTSUBUDUFUGUHUIUJUIULUMVRVFAPXFQXLVAXMUQAQXKXFXLURVTWAW
835580-
BAWTWJIVDVBZVBZPWLVAPAWSXRPWLACEWQIJKXQSUBXDXQVLZUHUIWCVFADIRXQ
835581-
PMUAWJUCUEXSXNUKUGXPUNWDWEWF $.
835582-
$}
835583-
835584-
${
835585-
$d B p q v $. $d B p q w $. $d D p q $. $d F f k p q w $.
835586-
$d F g l p q v $. $d G f k p q w $. $d G g l p q v $. $d H f k p q w $.
835587-
$d H g l p q v $. $d J f p q w $. $d J g p q v $. $d M f k w $.
835588-
$d M g l $. $d M p q $. $d N f k $. $d N g l v $. $d N p q $.
835589-
$d O f k p q w $. $d O g l p q v $. $d X f k p q w $. $d X g l p q v $.
835590-
$d Y f k p q w $. $d Y g l p q v $. $d Z f k p q w $. $d Z g l p q v $.
835591-
$d p ph q $.
835592835539
upcic.b $e |- B = ( Base ` D ) $.
835593835540
upcic.c $e |- C = ( Base ` E ) $.
835594835541
upcic.h $e |- H = ( Hom ` D ) $.
835595835542
upcic.j $e |- J = ( Hom ` E ) $.
835596835543
upcic.o $e |- O = ( comp ` E ) $.
835597835544
upcic.f $e |- ( ph -> F ( D Func E ) G ) $.
835598-
upcic.z $e |- ( ph -> Z e. C ) $.
835599835545
upcic.x $e |- ( ph -> X e. B ) $.
835546+
upcic.y $e |- ( ph -> Y e. B ) $.
835547+
upcic.z $e |- ( ph -> Z e. C ) $.
835600835548
upcic.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835601835549
upcic.1 $e |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w )
835602835550
f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835603-
upcic.y $e |- ( ph -> Y e. B ) $.
835604-
upcic.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835605-
upcic.2 $e |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v )
835551+
835552+
${
835553+
$d .x. p $. $d B p w $. $d D p $. $d F f p k w $. $d G f p k w $.
835554+
$d H f p k w $. $d J f p w $. $d K p $. $d L p $. $d M f p k w $.
835555+
$d O f p k w $. $d X f p k w $. $d Y p $. $d Z f p k w $.
835556+
upciclem2.od $e |- .x. = ( comp ` D ) $.
835557+
upciclem2.k $e |- ( ph -> K e. ( X H Y ) ) $.
835558+
upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835559+
upciclem2.mn $e |- ( ph -> M = ( ( ( Y G X ) ` L )
835560+
( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835561+
upciclem2.nm $e |- ( ph -> N = ( ( ( X G Y ) ` K )
835562+
( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835563+
$( Lemma for ~ upcic . (Contributed by Zhi Wang, 17-Sep-2025.) $)
835564+
upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835565+
= ( ( Id ` D ) ` X ) ) $=
835566+
( vp cv co cfv wceq ccid fveq2 oveq1d eqeq2d upciclem1 funcrcl2 catcocl
835567+
cop catidcl funcrcl3 funcf1 ffvelcdmd funcf2 catass funcco oveq2d eqtrd
835568+
eqid 3eqtr4rd funcid catlid eqtr2d reu2eqd ) APURUSZSSKUTZVAZPUASJVAZVJ
835569+
ZWIRUTZUTZVBPONSTVJSFUTUTZWGVAZPWKUTZVBPSEVCVAZVAZWGVAZPWKUTZVBURSSLUTW
835570+
MWQWFWMVBZWLWOPWTWHWNPWKWFWMWGVDVEVFWFWQVBZWLWSPXAWHWRPWKWFWQWGVDVEVFAB
835571+
CHGJKLMPPRSSUAURULUHUKVGACEFNOLSTSUBUDUMAEIJKUGVHZUHUIUHUNUOVIACEWPLSUB
835572+
UDWPVTZXBUHVKAOTSKUTZVAZNSTKUTZVAZWITJVAZVJWIRUTUTZPWKUTXEXGPWJXHRUTUTZ
835573+
UAXHVJWIRUTZUTZWOPADIRPXGMXEWIUAWIXHUCUEUFAEIJKUGVLZUJACDSJACDEIJKUBUCU
835574+
GVMZUHVNZACDTJXNUIVNUKASTLUTWIXHMUTNXFACEIJKLMSTUBUDUEUGUHUIVOUNVNXOATS
835575+
LUTXHWIMUTOXDACEIJKLMTSUBUDUEUGUIUHVOUOVNVPAWNXIPWKACEFIJKLNORSTSUBUDUM
835576+
UFUGUHUIUHUNUOVQVEAPXEQXKUTXLUPAQXJXEXKUQVRVSWAAWSWIIVCVAZVAZPWKUTPAWRX
835577+
QPWKACEWPIJKXPSUBXCXPVTZUGUHWBVEADIRXPPMUAWIUCUEXRXMUJUFXOUKWCWDWE $.
835578+
$}
835579+
835580+
${
835581+
$d B p q v $. $d B p q w $. $d D p q $. $d F f k p q w $.
835582+
$d F g l p q v $. $d G f k p q w $. $d G g l p q v $.
835583+
$d H f k p q w $. $d H g l p q v $. $d J f p q w $. $d J g p q v $.
835584+
$d M f k w $. $d M g l $. $d M p q $. $d N f k $. $d N g l v $.
835585+
$d N p q $. $d O f k p q w $. $d O g l p q v $. $d X f k p q w $.
835586+
$d X g l p q v $. $d Y f k p q w $. $d Y g l p q v $.
835587+
$d Z f k p q w $. $d Z g l p q v $. $d p ph q $.
835588+
upcic.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835589+
upcic.2 $e |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) )
835590+
E! l e. ( Y H v )
835606835591
g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) $.
835607-
$( A universal property defines an object up to isomorphism given its
835608-
existence. (Contributed by Zhi Wang, 16-Sep-2025.) $)
835609-
upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835610-
( vp vq cv co cfv cop wceq ccic wbr wreu wrex upciclem1 reurex wcel simpl
835611-
syl 3syl ciso eqid cfunc ad2antrr funcrcl2 cco ccid simplrl simprl simprr
835612-
wa wral simplrr upciclem2 isisod brcici rexlimddv ) APUOUQZRSLURUSOTRKUSZ
835613-
UTZSKUSZQURURVAZRSFVBUSVCZUORSMURZAWMUOWOVDWMUOWOVEABDIGKLMNOPQRSTUOUKULU
835614-
MVFWMUOWOVGVJAWIWOVHZWMWBZWBZOUPUQZSRLURUSPTWLUTZWJQURURVAZWNUPSRMURZWRAX
835615-
AUPXBVDXAUPXBVEAWQVIACDUAHKLMNPOQSRTUPUNUIUJVFXAUPXBVGVKWRWSXBVHZXAWBZWBZ
835616-
DFWIFVLUSZRSXFVMZUBXEFJKLAKLFJVNURVCWQXDUGVOZVPZARDVHWQXDUIVOZASDVHWQXDUL
835617-
VOZXEDFFVQUSZFVRUSZWIWSMXFRSUBUDXLVMZXGXMVMXIXJXKAWPWMXDVSZWRXCXAVTZXEBDE
835618-
FXLGIJKLMNWIWSOPQRSTUBUCUDUEXNUFXHXJXKATEVHWQXDUHVOZXOXPAOTWJNURVHWQXDUJV
835619-
OZAPTWLNURVHWQXDUMVOZAGUQIUQRBUQZLURUSOWKXTKUSZQURURVAIRXTMURVDGTYANURWCB
835620-
DWCWQXDUKVOWRXCXAWAZAWPWMXDWDZWEXECDEFXLHUAJKLMNWSWIPOQSRTUBUCUDUEXNUFXHX
835621-
KXJXQXPXOXSXRAHUQUAUQSCUQZLURUSPWTYDKUSZQURURVAUASYDMURVDHTYENURWCCDWCWQX
835622-
DUNVOYCYBWEWFWGWHWH $.
835592+
$( A universal property defines an object up to isomorphism given its
835593+
existence. (Contributed by Zhi Wang, 17-Sep-2025.) $)
835594+
upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835595+
( vp vq cv co cfv cop wceq ccic wbr wreu wrex upciclem1 reurex syl wcel
835596+
wa simpl 3syl ciso eqid cfunc ad2antrr funcrcl2 cco ccid simplrl simprl
835597+
wral simprr simplrr upciclem2 isisod brcici rexlimddv ) APUOUQZRSLURUSO
835598+
TRKUSZUTZSKUSZQURURVAZRSFVBUSVCZUORSMURZAWMUOWOVDWMUOWOVEABDIGKLMNOPQRS
835599+
TUOULUIUMVFWMUOWOVGVHAWIWOVIZWMVJZVJZOUPUQZSRLURUSPTWLUTZWJQURURVAZWNUP
835600+
SRMURZWRAXAUPXBVDXAUPXBVEAWQVKACDUAHKLMNPOQSRTUPUNUHUKVFXAUPXBVGVLWRWSX
835601+
BVIZXAVJZVJZDFWIFVMUSZRSXFVNZUBXEFJKLAKLFJVOURVCWQXDUGVPZVQZARDVIWQXDUH
835602+
VPZASDVIWQXDUIVPZXEDFFVRUSZFVSUSZWIWSMXFRSUBUDXLVNZXGXMVNXIXJXKAWPWMXDV
835603+
TZWRXCXAWAZXEBDEFXLGIJKLMNWIWSOPQRSTUBUCUDUEUFXHXJXKATEVIWQXDUJVPZAOTWJ
835604+
NURVIWQXDUKVPAGUQIUQRBUQZLURUSOWKXRKUSZQURURVAIRXRMURVDGTXSNURWBBDWBWQX
835605+
DULVPXNXOXPWRXCXAWCZAWPWMXDWDZWEXECDEFXLHUAJKLMNWSWIPOQSRTUBUCUDUEUFXHX
835606+
KXJXQAPTWLNURVIWQXDUMVPAHUQUAUQSCUQZLURUSPWTYBKUSZQURURVAUASYBMURVDHTYC
835607+
NURWBCDWBWQXDUNVPXNXPXOYAXTWEWFWGWHWH $.
835608+
$}
835623835609
$}
835624835610

835625835611

0 commit comments

Comments
 (0)