Skip to content

Commit 2d515a2

Browse files
authored
polynomials are continuous (iset.mm) (#5031)
* Add cncfcn1 to iset.mm Stated as in set.mm. The proof is via cncfcn1cntop . * Add fsumcn to iset.mm Stated as in set.mm. The proof is via fsumcncntop . * add ovmpot to mmil.html * copy fvmpopr2d from set.mm to iset.mm * Add mpomulcn to iset.mm Stated as in set.mm. The proof is the set.mm proof, with a few small changes. * Add expcn to iset.mm Stated as in set.mm. The proof is the set.mm proof with some changes around replacing ovmpot with ovmpog . * Add plycn to iset.mm Stated as in set.mmm. The proof is basically the set.mm proof although many steps have to change to use elply in place of coeff and deg .
1 parent 70a728a commit 2d515a2

File tree

2 files changed

+127
-23
lines changed

2 files changed

+127
-23
lines changed

iset.mm

Lines changed: 120 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -55786,6 +55786,24 @@ ordered pairs (for use in defining operations). This is a special case
5578655786
( wcel cvv co wceq ovmpog mp3an3 ) CEODFOHPOCDIQHRNABCDEFGHIJPKLMST $.
5578755787
$}
5578855788

55789+
${
55790+
$d ph c d $. $d C c d $. $d A a b c d $. $d B a b c d $.
55791+
fvmpopr2d.1 $e |- ( ph -> F = ( a e. A , b e. B |-> C ) ) $.
55792+
fvmpopr2d.2 $e |- ( ph -> P = <. a , b >. ) $.
55793+
fvmpopr2d.3 $e |- ( ( ph /\ a e. A /\ b e. B ) -> C e. V ) $.
55794+
$( Value of an operation given by maps-to notation. (Contributed by Rohan
55795+
Ridenour, 14-May-2024.) $)
55796+
fvmpopr2d $p |- ( ( ph /\ a e. A /\ b e. B ) -> ( F ` P ) = C ) $=
55797+
( vc vd cv wcel cmpo co wceq nfcv w3a cfv cop fveq12d eqtr4id csb nfcsb1v
55798+
df-ov 3ad2ant1 nfcsbw csbeq1a sylan9eq cbvmpo oveqi equcom anbi12i sylbir
55799+
eqidd wa eqcomd adantl simp2 simp3 ovmpod eqtrid eqtr3d ) AHOZBPZIOZCPZUA
55800+
ZVGVIHIBCDQZRZEFUBZDVKVMVGVIUCZVLUBVNVGVIVLUHVKEVOFVLAVHFVLSVJJUIAVHEVOSV
55801+
JKUIUDUEVKVMVGVIMNBCINOZHMOZDUFZUFZQZRDVLVTVGVIHIMNBCDVSMDTNDTHIVPVRHVPTH
55802+
VQDUGUJIVPVRUGVGVQSZVIVPSZDVRVSHVQDUKIVPVRUKULZUMUNVKMNVGVIBCVSDVTGVKVTUR
55803+
VQVGSZVPVISZUSZVSDSVKWFDVSWFWAWBUSDVSSWAWDWBWEHMUOINUOUPWCUQUTVAAVHVJVBAV
55804+
HVJVCLVDVEVF $.
55805+
$}
55806+
5578955807
${
5579055808
$d f u v w x y z A $. $d f u v w x y z B $. $d x y z R $.
5579155809
$d f u v w y z C $. $d f u v w y z D $. $d f u v w x y z H $.
@@ -175124,16 +175142,45 @@ S C_ ( P ( ball ` D ) T ) ) $=
175124175142
YAUTYBYCYD $.
175125175143
$}
175126175144

175145+
${
175146+
$d a b c u v w z d e J $. $d a b c d e u v x y z w $.
175147+
mpomulcn.j $e |- J = ( TopOpen ` CCfld ) $.
175148+
$( Complex number multiplication is a continuous function. (Contributed by
175149+
GG, 16-Mar-2025.) $)
175150+
mpomulcn $p |- ( x e. CC , y e. CC |-> ( x x. y ) ) e.
175151+
( ( J tX J ) Cn J ) $=
175152+
( vz vw vv vu cc cv cmul co crp wcel cmin cabs cfv clt wa wceq va vb cmpo
175153+
vc vd ve cnfldtopn mpomulf w3a wbr wi wral mulcn2 simplr simplll fvoveq1d
175154+
wrex breq1d simpr anbi12d eqcomd oveq12d cop wtru tru oveq1 oveq2 cbvmpov
175155+
a1i eqidd mulcl 3adant1 fvmpopr2d mp3an1 eqtr4di syl2an2r eqtr3d adantllr
175156+
df-ov eqtr2id ad3antlr fveq2d imbi12d rspcdv rspcimdv expimpd ex ralrimdv
175157+
com13 reximdv mpd addcncntoplem ) EFGHABIIAJZBJZKLZUCZCUAUBUDCDUGABUHUAJZ
175158+
MNZUBJZINZUDJZINZUIZUEJZWSOLPQZEJZRUJZUFJZXAOLPQZFJZRUJZSZXDXHKLZWSXAKLZO
175159+
LZPQZWQRUJZUKZUFIULZUEIULZFMUQZEMUQHJZWSOLPQZXFRUJZGJZXAOLPQZXJRUJZSZYBYE
175160+
WPLZWSXAWPLZOLZPQZWQRUJZUKZGIULZHIULZFMUQZEMUQEFUFUEWQWSXAUMXCYAYQEMXCXTY
175161+
PFMXCXTYOHIXCXTYBINZYOUKXCXTSZYRYNGIYEINZYRYSYNYTYRYSYNUKYTYRSZXCXTYNUUAX
175162+
CSZXSYNUEYBIYTYRXCUNUUBXDYBTZSZXRYNUFYEIYTYRXCUUCUOUUDXHYETZSZXLYHXQYMUUF
175163+
XGYDXKYGUUFXEYCXFRUUFXDYBWSPOUUBUUCUUEUNUPURUUFXIYFXJRUUFXHYEXAPOUUDUUEUS
175164+
UPURUTUUFXPYLWQRUUFXOYKPUUFXMYIXNYJOUUAUUCUUEXMYITXCUUAUUCSZUUESZYBYEKLZX
175165+
MYIUUHYBXDYEXHKUUHXDYBUUAUUCUUEUNVAUUHXHYEUUGUUEUSVAVBUUGYRUUEYTUUIYITYTY
175166+
RUUCUNYTYRUUCUUEUOYRYTSUUIYBYEVCZWPQZYIVDYRYTUUIUUKTVEVDYRYTUIUUKUUIVDIIU
175167+
UIUUJWPIHGWPHGIIUUIUCTVDABHGIIWOUUIYBWNKLWMYBWNKVFWNYEYBKVGVHVIVDUUJVJYRY
175168+
TUUIINVDYBYEVKVLVMVAVNYBYEWPVSVOVPVQVRXCXNYJTUUAUUCUUEXCYJWSXAVCZWPQXNWSX
175169+
AWPVSWRIIXNUULWPIUBUDWPUBUDIIXNUCTWRABUBUDIIWOXNWSWNKLWMWSWNKVFWNXAWSKVGV
175170+
HVIWRUULVJWTXBXNINWRWSXAVKVLVMVTWAVBWBURWCWDWEWFWGWIWHWGWHWJWJWKWL $.
175171+
$}
175172+
175127175173
${
175128175174
$d k u v w x y z A $. $d k v w x y z J $. $d k z L $. $d k w x y z ph $.
175129175175
$d k v w x y z K $. $d k u v w x y z X $. $d k u v w x y z Y $.
175130175176
$d u v w z B $.
175131175177
fsumcncntop.3 $e |- K = ( MetOpen ` ( abs o. - ) ) $.
175132-
fsumcn.4 $e |- ( ph -> J e. ( TopOn ` X ) ) $.
175133-
fsumcn.5 $e |- ( ph -> A e. Fin ) $.
175178+
fsumcncntop.4 $e |- ( ph -> J e. ( TopOn ` X ) ) $.
175179+
fsumcncntop.5 $e |- ( ph -> A e. Fin ) $.
175134175180
${
175135175181
$d y B $.
175136-
fsumcn.6 $e |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) $.
175182+
fsumcncntop.6 $e |- ( ( ph /\ k e. A )
175183+
-> ( x e. X |-> B ) e. ( J Cn K ) ) $.
175137175184
$( A finite sum of functions to complex numbers from a common topological
175138175185
space is continuous. The class expression for ` B ` normally contains
175139175186
free variables ` k ` and ` x ` to index it. (Contributed by NM,
@@ -175171,6 +175218,46 @@ S C_ ( P ( ball ` D ) T ) ) $=
175171175218
$}
175172175219
$}
175173175220

175221+
${
175222+
fsumcn.3 $e |- K = ( TopOpen ` CCfld ) $.
175223+
fsumcn.4 $e |- ( ph -> J e. ( TopOn ` X ) ) $.
175224+
fsumcn.5 $e |- ( ph -> A e. Fin ) $.
175225+
${
175226+
$d A k x $. $d J k x $. $d K k x $. $d X k x $. $d k ph x $.
175227+
fsumcn.6 $e |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) $.
175228+
$( A finite sum of functions to complex numbers from a common topological
175229+
space is continuous. The class expression for ` B ` normally contains
175230+
free variables ` k ` and ` x ` to index it. (Contributed by NM,
175231+
8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.) $)
175232+
fsumcn $p |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) $=
175233+
( cnfldtopn fsumcncntop ) ABCDEFGHGIMJKLN $.
175234+
$}
175235+
$}
175236+
175237+
${
175238+
$d x A $. $d k n x u v J $. $d n x N $.
175239+
expcn.j $e |- J = ( TopOpen ` CCfld ) $.
175240+
$( The power function on complex numbers, for fixed exponent ` N ` , is
175241+
continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by
175242+
Mario Carneiro, 23-Aug-2014.) Avoid ~ ax-mulf . (Revised by GG,
175243+
16-Mar-2025.) $)
175244+
expcn $p |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) $=
175245+
( vn vu vv cc cv cexp co cmpt wcel cc0 c1 wceq oveq2 mpteq2dv eleq1d cmul
175246+
vk ccn caddc exp0 mpteq2ia wtru ctopon cfv cnfldtopon 1cnd cnmptc eqeltri
175247+
a1i mptru cn0 wa cmpo oveq1 cbvmptv simpl expp1 expcl mulcld eqid syl3anc
175248+
id ovmpog eqtr4d syl2anr mpteq2dva eqtrid simpr cnmptid mpomulcn cnmpt12f
175249+
eqeltrrid ctx eqeltrd ex nn0ind ) AHAIZEIZJKZLZBBUBKZMAHWANJKZLZWEMAHWAUA
175250+
IZJKZLZWEMZAHWAWHOUCKZJKZLZWEMZAHWACJKZLZWEMEUACWBNPZWDWGWEWRAHWCWFWBNWAJ
175251+
QRSWBWHPZWDWJWEWSAHWCWIWBWHWAJQRSWBWLPZWDWNWEWTAHWCWMWBWLWAJQRSWBCPZWDWQW
175252+
EXAAHWCWPWBCWAJQRSWGAHOLZWEAHWFOWAUDUEXBWEMUFAOBBHHBHUGUHMZUFBDUIZUMZXEUF
175253+
UJUKUNULWHUOMZWKWOXFWKUPZWNEHWBWHJKZWBFGHHFIZGIZTKZUQZKZLZWEXGWNEHWBWLJKZ
175254+
LXNAEHWMXOWAWBWLJURUSXGEHXOXMWBHMZXPXFXOXMPXGXPVFXFWKUTXPXFUPZXOXHWBTKZXM
175255+
WBWHVAXQXHHMXPXRHMXMXRPWBWHVBZXPXFUTZXQXHWBXSXTVCFGXHWBHHXKXRXLXHXJTKHXIX
175256+
HXJTURXJWBXHTQXLVDVGVEVHVIVJVKXGEXHWBXLBBBBHXCXGXDUMZXGEHXHLWJWEAEHWIXHWA
175257+
WBWHJURUSXFWKVLVPXGEBHYAVMXLBBVQKBUBKMXGFGBDVNUMVOVRVSVT $.
175258+
$( $j usage 'expcn' avoids 'ax-mulf'; $)
175259+
$}
175260+
175174175261

175175175262
$(
175176175263
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -175525,7 +175612,7 @@ S C_ ( P ( ball ` D ) T ) ) $=
175525175612
$}
175526175613

175527175614
${
175528-
cncfcn1.1 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
175615+
cncfcn1cntop.1 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
175529175616
$( Relate complex function continuity to topological continuity.
175530175617
(Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
175531175618
7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.) $)
@@ -175534,6 +175621,15 @@ S C_ ( P ( ball ` D ) T ) ) $=
175534175621
) CCDZNCCEFAAGFHCIZOCCAAABACABJKZPLM $.
175535175622
$}
175536175623

175624+
${
175625+
cncfcn1.1 $e |- J = ( TopOpen ` CCfld ) $.
175626+
$( Relate complex function continuity to topological continuity.
175627+
(Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
175628+
7-Sep-2015.) $)
175629+
cncfcn1 $p |- ( CC -cn-> CC ) = ( J Cn J ) $=
175630+
( cnfldtopn cncfcn1cntop ) AABCD $.
175631+
$}
175632+
175537175633
${
175538175634
$d x w y z A $. $d x w y z S $. $d x w y z T $.
175539175635
$( A constant function is a continuous function on ` CC ` . (Contributed
@@ -179449,6 +179545,26 @@ theorem as stated here (although versions with additional conditions,
179449179545
OXSXNXOXPXQXRXQCXTYAYBYCXP $.
179450179546
$}
179451179547

179548+
${
179549+
$d F a d k z $. $d F a k u v z $. $d S a d k z $.
179550+
$( A polynomial is a continuous function. (Contributed by Mario Carneiro,
179551+
23-Jul-2014.) Avoid ~ ax-mulf . (Revised by GG, 16-Mar-2025.) $)
179552+
plycn $p |- ( F e. ( Poly ` S ) -> F e. ( CC -cn-> CC ) ) $=
179553+
( vz vd vk va vu vv cfv wcel cc cc0 cv co cmul cmpt cn0 wa a1i adantr cfz
179554+
cply cexp csu wceq csn cun cmap wrex ccncf wss elply simprbi ccnfld ctopn
179555+
ccn simpr eqid ctopon cnfldtopon 0zd simprl nn0zd fzfigd wf elmapi plybss
179556+
ad2antll 0cnd snssd unssd fssd elfznn0 adantl ffvelcdmd cnmptc expcn cmpo
179557+
syl ctx oveq12 cnmpt12 fsumcn eqeltrd cncfcn1 eleqtrrdi ex rexlimdvva mpd
179558+
mpomulcn ) BAUBIJZBCKLDMZUANZEMZFMZIZCMWNUCNZONZEUDPZUEZFALUFZUGZQUHNZUID
179559+
QUIZBKKUJNZJZWKAKUKZXDCAEDBFULUMWKWTXFDFQXCWKWLQJZWOXCJZRZRZWTXFXKWTRZBUN
179560+
UOIZXMUPNZXEXLBWSXNXKWTUQXKWSXNJWTXKCWMWREXMXMKXMURZXMKUSIJZXKXMXOUTZSXKL
179561+
WLXKVAXKWLWKXHXIVBVCVDXKWNWMJZRZCGHWPWQGMZHMZONZWRXMXMXMXMKKKXPXSXQSZXSCW
179562+
PXMXMKKYCYCXSQKWNWOXKQKWOVEXRXKQXBKWOXIQXBWOVEWKXHWOXBQVFVHXKAXAKWKXGXJAB
179563+
VGTXKLKXKVIVJVKVLTXRWNQJZXKWNWLVMVNZVOVPXSYDCKWQPXNJYECXMWNXOVQVSYCYCGHKK
179564+
YBVRXMXMVTNXMUPNJXSGHXMXOWJSXTWPYAWQOWAWBWCTWDXMXOWEWFWGWHWI $.
179565+
$( $j usage 'plycn' avoids 'ax-mulf'; $)
179566+
$}
179567+
179452179568
${
179453179569
$d A a k n x $. $d F a k n x $. $d G x $. $d S x $. $d V x $.
179454179570
$( A polynomial with real coefficients distributes under conjugation.

mmil.raw.html

Lines changed: 7 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -3453,6 +3453,12 @@
34533453
found in ~ ovi3 .</TD>
34543454
</TR>
34553455

3456+
<tr>
3457+
<td>ovmpot</td>
3458+
<td><i>none</i></td>
3459+
<td>the set.mm proof uses ovex</td>
3460+
</tr>
3461+
34563462
<TR>
34573463
<TD>oprssdm</TD>
34583464
<TD>~ oprssdmm</TD>
@@ -13780,15 +13786,10 @@
1378013786
<td>~ divcnap</td>
1378113787
</tr>
1378213788

13783-
<tr>
13784-
<td>fsumcn</td>
13785-
<td>~ fsumcncntop</td>
13786-
</tr>
13787-
1378813789
<tr>
1378913790
<td>fsum2cn</td>
1379013791
<td><i>none</i></td>
13791-
<td>the set.mm proof uses fsumcn</td>
13792+
<td>may be possible now that we have ~ fsumcn</td>
1379213793
</tr>
1379313794

1379413795
<tr>
@@ -13820,11 +13821,6 @@
1382013821
<td>~ cncfcncntop</td>
1382113822
</tr>
1382213823

13823-
<tr>
13824-
<td>cncfcn1</td>
13825-
<td>~ cncfcn1cntop</td>
13826-
</tr>
13827-
1382813824
<tr>
1382913825
<td>cncfmpt2f</td>
1383013826
<td>~ cncfmpt2fcntop</td>
@@ -14390,14 +14386,6 @@
1439014386
and theorems</td>
1439114387
</tr>
1439214388

14393-
<tr>
14394-
<td>plycn</td>
14395-
<td><i>none</i></td>
14396-
<td>should be provable but needs a look through the continuity
14397-
theorems being used including expcn , mpomulcn , etc. It should
14398-
be possible to replace the use of deg and coeff with ~ elply2</td>
14399-
</tr>
14400-
1440114389
<tr>
1440214390
<td>coecj</td>
1440314391
<td>~ plycjlemc</td>

0 commit comments

Comments
 (0)