@@ -55786,6 +55786,24 @@ ordered pairs (for use in defining operations). This is a special case
55786
55786
( wcel cvv co wceq ovmpog mp3an3 ) CEODFOHPOCDIQHRNABCDEFGHIJPKLMST $.
55787
55787
$}
55788
55788
55789
+ ${
55790
+ $d ph c d $. $d C c d $. $d A a b c d $. $d B a b c d $.
55791
+ fvmpopr2d.1 $e |- ( ph -> F = ( a e. A , b e. B |-> C ) ) $.
55792
+ fvmpopr2d.2 $e |- ( ph -> P = <. a , b >. ) $.
55793
+ fvmpopr2d.3 $e |- ( ( ph /\ a e. A /\ b e. B ) -> C e. V ) $.
55794
+ $( Value of an operation given by maps-to notation. (Contributed by Rohan
55795
+ Ridenour, 14-May-2024.) $)
55796
+ fvmpopr2d $p |- ( ( ph /\ a e. A /\ b e. B ) -> ( F ` P ) = C ) $=
55797
+ ( vc vd cv wcel cmpo co wceq nfcv w3a cfv cop fveq12d eqtr4id csb nfcsb1v
55798
+ df-ov 3ad2ant1 nfcsbw csbeq1a sylan9eq cbvmpo oveqi equcom anbi12i sylbir
55799
+ eqidd wa eqcomd adantl simp2 simp3 ovmpod eqtrid eqtr3d ) AHOZBPZIOZCPZUA
55800
+ ZVGVIHIBCDQZRZEFUBZDVKVMVGVIUCZVLUBVNVGVIVLUHVKEVOFVLAVHFVLSVJJUIAVHEVOSV
55801
+ JKUIUDUEVKVMVGVIMNBCINOZHMOZDUFZUFZQZRDVLVTVGVIHIMNBCDVSMDTNDTHIVPVRHVPTH
55802
+ VQDUGUJIVPVRUGVGVQSZVIVPSZDVRVSHVQDUKIVPVRUKULZUMUNVKMNVGVIBCVSDVTGVKVTUR
55803
+ VQVGSZVPVISZUSZVSDSVKWFDVSWFWAWBUSDVSSWAWDWBWEHMUOINUOUPWCUQUTVAAVHVJVBAV
55804
+ HVJVCLVDVEVF $.
55805
+ $}
55806
+
55789
55807
${
55790
55808
$d f u v w x y z A $. $d f u v w x y z B $. $d x y z R $.
55791
55809
$d f u v w y z C $. $d f u v w y z D $. $d f u v w x y z H $.
@@ -175124,16 +175142,45 @@ S C_ ( P ( ball ` D ) T ) ) $=
175124
175142
YAUTYBYCYD $.
175125
175143
$}
175126
175144
175145
+ ${
175146
+ $d a b c u v w z d e J $. $d a b c d e u v x y z w $.
175147
+ mpomulcn.j $e |- J = ( TopOpen ` CCfld ) $.
175148
+ $( Complex number multiplication is a continuous function. (Contributed by
175149
+ GG, 16-Mar-2025.) $)
175150
+ mpomulcn $p |- ( x e. CC , y e. CC |-> ( x x. y ) ) e.
175151
+ ( ( J tX J ) Cn J ) $=
175152
+ ( vz vw vv vu cc cv cmul co crp wcel cmin cabs cfv clt wa wceq va vb cmpo
175153
+ vc vd ve cnfldtopn mpomulf w3a wbr wi wral mulcn2 simplr simplll fvoveq1d
175154
+ wrex breq1d simpr anbi12d eqcomd oveq12d cop wtru tru oveq1 oveq2 cbvmpov
175155
+ a1i eqidd mulcl 3adant1 fvmpopr2d mp3an1 eqtr4di syl2an2r eqtr3d adantllr
175156
+ df-ov eqtr2id ad3antlr fveq2d imbi12d rspcdv rspcimdv expimpd ex ralrimdv
175157
+ com13 reximdv mpd addcncntoplem ) EFGHABIIAJZBJZKLZUCZCUAUBUDCDUGABUHUAJZ
175158
+ MNZUBJZINZUDJZINZUIZUEJZWSOLPQZEJZRUJZUFJZXAOLPQZFJZRUJZSZXDXHKLZWSXAKLZO
175159
+ LZPQZWQRUJZUKZUFIULZUEIULZFMUQZEMUQHJZWSOLPQZXFRUJZGJZXAOLPQZXJRUJZSZYBYE
175160
+ WPLZWSXAWPLZOLZPQZWQRUJZUKZGIULZHIULZFMUQZEMUQEFUFUEWQWSXAUMXCYAYQEMXCXTY
175161
+ PFMXCXTYOHIXCXTYBINZYOUKXCXTSZYRYNGIYEINZYRYSYNYTYRYSYNUKYTYRSZXCXTYNUUAX
175162
+ CSZXSYNUEYBIYTYRXCUNUUBXDYBTZSZXRYNUFYEIYTYRXCUUCUOUUDXHYETZSZXLYHXQYMUUF
175163
+ XGYDXKYGUUFXEYCXFRUUFXDYBWSPOUUBUUCUUEUNUPURUUFXIYFXJRUUFXHYEXAPOUUDUUEUS
175164
+ UPURUTUUFXPYLWQRUUFXOYKPUUFXMYIXNYJOUUAUUCUUEXMYITXCUUAUUCSZUUESZYBYEKLZX
175165
+ MYIUUHYBXDYEXHKUUHXDYBUUAUUCUUEUNVAUUHXHYEUUGUUEUSVAVBUUGYRUUEYTUUIYITYTY
175166
+ RUUCUNYTYRUUCUUEUOYRYTSUUIYBYEVCZWPQZYIVDYRYTUUIUUKTVEVDYRYTUIUUKUUIVDIIU
175167
+ UIUUJWPIHGWPHGIIUUIUCTVDABHGIIWOUUIYBWNKLWMYBWNKVFWNYEYBKVGVHVIVDUUJVJYRY
175168
+ TUUIINVDYBYEVKVLVMVAVNYBYEWPVSVOVPVQVRXCXNYJTUUAUUCUUEXCYJWSXAVCZWPQXNWSX
175169
+ AWPVSWRIIXNUULWPIUBUDWPUBUDIIXNUCTWRABUBUDIIWOXNWSWNKLWMWSWNKVFWNXAWSKVGV
175170
+ HVIWRUULVJWTXBXNINWRWSXAVKVLVMVTWAVBWBURWCWDWEWFWGWIWHWGWHWJWJWKWL $.
175171
+ $}
175172
+
175127
175173
${
175128
175174
$d k u v w x y z A $. $d k v w x y z J $. $d k z L $. $d k w x y z ph $.
175129
175175
$d k v w x y z K $. $d k u v w x y z X $. $d k u v w x y z Y $.
175130
175176
$d u v w z B $.
175131
175177
fsumcncntop.3 $e |- K = ( MetOpen ` ( abs o. - ) ) $.
175132
- fsumcn .4 $e |- ( ph -> J e. ( TopOn ` X ) ) $.
175133
- fsumcn .5 $e |- ( ph -> A e. Fin ) $.
175178
+ fsumcncntop .4 $e |- ( ph -> J e. ( TopOn ` X ) ) $.
175179
+ fsumcncntop .5 $e |- ( ph -> A e. Fin ) $.
175134
175180
${
175135
175181
$d y B $.
175136
- fsumcn.6 $e |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) $.
175182
+ fsumcncntop.6 $e |- ( ( ph /\ k e. A )
175183
+ -> ( x e. X |-> B ) e. ( J Cn K ) ) $.
175137
175184
$( A finite sum of functions to complex numbers from a common topological
175138
175185
space is continuous. The class expression for ` B ` normally contains
175139
175186
free variables ` k ` and ` x ` to index it. (Contributed by NM,
@@ -175171,6 +175218,46 @@ S C_ ( P ( ball ` D ) T ) ) $=
175171
175218
$}
175172
175219
$}
175173
175220
175221
+ ${
175222
+ fsumcn.3 $e |- K = ( TopOpen ` CCfld ) $.
175223
+ fsumcn.4 $e |- ( ph -> J e. ( TopOn ` X ) ) $.
175224
+ fsumcn.5 $e |- ( ph -> A e. Fin ) $.
175225
+ ${
175226
+ $d A k x $. $d J k x $. $d K k x $. $d X k x $. $d k ph x $.
175227
+ fsumcn.6 $e |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) $.
175228
+ $( A finite sum of functions to complex numbers from a common topological
175229
+ space is continuous. The class expression for ` B ` normally contains
175230
+ free variables ` k ` and ` x ` to index it. (Contributed by NM,
175231
+ 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.) $)
175232
+ fsumcn $p |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) $=
175233
+ ( cnfldtopn fsumcncntop ) ABCDEFGHGIMJKLN $.
175234
+ $}
175235
+ $}
175236
+
175237
+ ${
175238
+ $d x A $. $d k n x u v J $. $d n x N $.
175239
+ expcn.j $e |- J = ( TopOpen ` CCfld ) $.
175240
+ $( The power function on complex numbers, for fixed exponent ` N ` , is
175241
+ continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by
175242
+ Mario Carneiro, 23-Aug-2014.) Avoid ~ ax-mulf . (Revised by GG,
175243
+ 16-Mar-2025.) $)
175244
+ expcn $p |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) $=
175245
+ ( vn vu vv cc cv cexp co cmpt wcel cc0 c1 wceq oveq2 mpteq2dv eleq1d cmul
175246
+ vk ccn caddc exp0 mpteq2ia wtru ctopon cfv cnfldtopon 1cnd cnmptc eqeltri
175247
+ a1i mptru cn0 wa cmpo oveq1 cbvmptv simpl expp1 expcl mulcld eqid syl3anc
175248
+ id ovmpog eqtr4d syl2anr mpteq2dva eqtrid simpr cnmptid mpomulcn cnmpt12f
175249
+ eqeltrrid ctx eqeltrd ex nn0ind ) AHAIZEIZJKZLZBBUBKZMAHWANJKZLZWEMAHWAUA
175250
+ IZJKZLZWEMZAHWAWHOUCKZJKZLZWEMZAHWACJKZLZWEMEUACWBNPZWDWGWEWRAHWCWFWBNWAJ
175251
+ QRSWBWHPZWDWJWEWSAHWCWIWBWHWAJQRSWBWLPZWDWNWEWTAHWCWMWBWLWAJQRSWBCPZWDWQW
175252
+ EXAAHWCWPWBCWAJQRSWGAHOLZWEAHWFOWAUDUEXBWEMUFAOBBHHBHUGUHMZUFBDUIZUMZXEUF
175253
+ UJUKUNULWHUOMZWKWOXFWKUPZWNEHWBWHJKZWBFGHHFIZGIZTKZUQZKZLZWEXGWNEHWBWLJKZ
175254
+ LXNAEHWMXOWAWBWLJURUSXGEHXOXMWBHMZXPXFXOXMPXGXPVFXFWKUTXPXFUPZXOXHWBTKZXM
175255
+ WBWHVAXQXHHMXPXRHMXMXRPWBWHVBZXPXFUTZXQXHWBXSXTVCFGXHWBHHXKXRXLXHXJTKHXIX
175256
+ HXJTURXJWBXHTQXLVDVGVEVHVIVJVKXGEXHWBXLBBBBHXCXGXDUMZXGEHXHLWJWEAEHWIXHWA
175257
+ WBWHJURUSXFWKVLVPXGEBHYAVMXLBBVQKBUBKMXGFGBDVNUMVOVRVSVT $.
175258
+ $( $j usage 'expcn' avoids 'ax-mulf'; $)
175259
+ $}
175260
+
175174
175261
175175
175262
$(
175176
175263
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -175525,7 +175612,7 @@ S C_ ( P ( ball ` D ) T ) ) $=
175525
175612
$}
175526
175613
175527
175614
${
175528
- cncfcn1 .1 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
175615
+ cncfcn1cntop .1 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
175529
175616
$( Relate complex function continuity to topological continuity.
175530
175617
(Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
175531
175618
7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.) $)
@@ -175534,6 +175621,15 @@ S C_ ( P ( ball ` D ) T ) ) $=
175534
175621
) CCDZNCCEFAAGFHCIZOCCAAABACABJKZPLM $.
175535
175622
$}
175536
175623
175624
+ ${
175625
+ cncfcn1.1 $e |- J = ( TopOpen ` CCfld ) $.
175626
+ $( Relate complex function continuity to topological continuity.
175627
+ (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
175628
+ 7-Sep-2015.) $)
175629
+ cncfcn1 $p |- ( CC -cn-> CC ) = ( J Cn J ) $=
175630
+ ( cnfldtopn cncfcn1cntop ) AABCD $.
175631
+ $}
175632
+
175537
175633
${
175538
175634
$d x w y z A $. $d x w y z S $. $d x w y z T $.
175539
175635
$( A constant function is a continuous function on ` CC ` . (Contributed
@@ -179449,6 +179545,26 @@ theorem as stated here (although versions with additional conditions,
179449
179545
OXSXNXOXPXQXRXQCXTYAYBYCXP $.
179450
179546
$}
179451
179547
179548
+ ${
179549
+ $d F a d k z $. $d F a k u v z $. $d S a d k z $.
179550
+ $( A polynomial is a continuous function. (Contributed by Mario Carneiro,
179551
+ 23-Jul-2014.) Avoid ~ ax-mulf . (Revised by GG, 16-Mar-2025.) $)
179552
+ plycn $p |- ( F e. ( Poly ` S ) -> F e. ( CC -cn-> CC ) ) $=
179553
+ ( vz vd vk va vu vv cfv wcel cc cc0 cv co cmul cmpt cn0 wa a1i adantr cfz
179554
+ cply cexp csu wceq csn cun cmap wrex ccncf wss elply simprbi ccnfld ctopn
179555
+ ccn simpr eqid ctopon cnfldtopon 0zd simprl nn0zd fzfigd wf elmapi plybss
179556
+ ad2antll 0cnd snssd unssd fssd elfznn0 adantl ffvelcdmd cnmptc expcn cmpo
179557
+ syl ctx oveq12 cnmpt12 fsumcn eqeltrd cncfcn1 eleqtrrdi ex rexlimdvva mpd
179558
+ mpomulcn ) BAUBIJZBCKLDMZUANZEMZFMZIZCMWNUCNZONZEUDPZUEZFALUFZUGZQUHNZUID
179559
+ QUIZBKKUJNZJZWKAKUKZXDCAEDBFULUMWKWTXFDFQXCWKWLQJZWOXCJZRZRZWTXFXKWTRZBUN
179560
+ UOIZXMUPNZXEXLBWSXNXKWTUQXKWSXNJWTXKCWMWREXMXMKXMURZXMKUSIJZXKXMXOUTZSXKL
179561
+ WLXKVAXKWLWKXHXIVBVCVDXKWNWMJZRZCGHWPWQGMZHMZONZWRXMXMXMXMKKKXPXSXQSZXSCW
179562
+ PXMXMKKYCYCXSQKWNWOXKQKWOVEXRXKQXBKWOXIQXBWOVEWKXHWOXBQVFVHXKAXAKWKXGXJAB
179563
+ VGTXKLKXKVIVJVKVLTXRWNQJZXKWNWLVMVNZVOVPXSYDCKWQPXNJYECXMWNXOVQVSYCYCGHKK
179564
+ YBVRXMXMVTNXMUPNJXSGHXMXOWJSXTWPYAWQOWAWBWCTWDXMXOWEWFWGWHWI $.
179565
+ $( $j usage 'plycn' avoids 'ax-mulf'; $)
179566
+ $}
179567
+
179452
179568
${
179453
179569
$d A a k n x $. $d F a k n x $. $d G x $. $d S x $. $d V x $.
179454
179570
$( A polynomial with real coefficients distributes under conjugation.
0 commit comments