@@ -26056,14 +26056,42 @@ choice between (what we call) a "definitional form" where the shorter
26056
26056
( wnfc cv wcel wnf wal df-nfc sp sylbi ) ACDBECFAGZBHLABCILBJK $.
26057
26057
$}
26058
26058
26059
+ ${
26060
+ $d x y $. $d y A $.
26061
+ nfcriv.1 $e |- F/_ x A $.
26062
+ $( Consequence of the not-free predicate, similiar to ~ nfcri . Requires
26063
+ ` y ` and ` A ` be disjoint, but is not based on ~ ax-13 . (Contributed
26064
+ by Wolf Lammen, 13-May-2023.) $)
26065
+ nfcriv $p |- F/ x y e. A $=
26066
+ ( wnfc cv wcel wnf nfcr ax-mp ) ACEBFCGAHDABCIJ $.
26067
+ $}
26068
+
26069
+ ${
26070
+ $d x y $. $d y A $.
26071
+ nfcd.1 $e |- F/ y ph $.
26072
+ nfcd.2 $e |- ( ph -> F/ x y e. A ) $.
26073
+ $( Deduce that a class ` A ` does not have ` x ` free in it. (Contributed
26074
+ by Mario Carneiro, 11-Aug-2016.) $)
26075
+ nfcd $p |- ( ph -> F/_ x A ) $=
26076
+ ( cv wcel wnf wal wnfc alrimi df-nfc sylibr ) ACGDHBIZCJBDKAOCEFLBCDMN $.
26077
+ $}
26078
+
26079
+ ${
26080
+ $d x y $. $d y A $.
26081
+ nfcrd.1 $e |- ( ph -> F/_ x A ) $.
26082
+ $( Consequence of the not-free predicate. (Contributed by Mario Carneiro,
26083
+ 11-Aug-2016.) $)
26084
+ nfcrd $p |- ( ph -> F/ x y e. A ) $=
26085
+ ( wnfc cv wcel wnf nfcr syl ) ABDFCGDHBIEBCDJK $.
26086
+ $}
26087
+
26059
26088
${
26060
26089
$d x y z $. $d z A $.
26061
26090
nfcri.1 $e |- F/_ x A $.
26062
26091
$( Consequence of the not-free predicate. (Contributed by Mario Carneiro,
26063
26092
11-Aug-2016.) $)
26064
26093
nfcrii $p |- ( y e. A -> A. x y e. A ) $=
26065
- ( vz cv wcel wnfc wnf nfcr ax-mp nf5ri hblem ) AEBCEFCGZAACHNAIDAECJKLM
26066
- $.
26094
+ ( vz cv wcel nfcriv nf5ri hblem ) AEBCEFCGAAECDHIJ $.
26067
26095
26068
26096
$( Consequence of the not-free predicate. (Note that unlike ~ nfcr , this
26069
26097
does not require ` y ` and ` A ` to be disjoint.) (Contributed by Mario
@@ -26072,16 +26100,6 @@ choice between (what we call) a "definitional form" where the shorter
26072
26100
( cv wcel nfcrii nf5i ) BECFAABCDGH $.
26073
26101
$}
26074
26102
26075
- ${
26076
- $d x y $. $d y A $.
26077
- nfcd.1 $e |- F/ y ph $.
26078
- nfcd.2 $e |- ( ph -> F/ x y e. A ) $.
26079
- $( Deduce that a class ` A ` does not have ` x ` free in it. (Contributed
26080
- by Mario Carneiro, 11-Aug-2016.) $)
26081
- nfcd $p |- ( ph -> F/_ x A ) $=
26082
- ( cv wcel wnf wal wnfc alrimi df-nfc sylibr ) ACGDHBIZCJBDKAOCEFLBCDMN $.
26083
- $}
26084
-
26085
26103
${
26086
26104
$d x y $. $d A y $. $d B y $. $d ph y $.
26087
26105
nfceqdf.1 $e |- F/ x ph $.
@@ -26179,14 +26197,8 @@ choice between (what we call) a "definitional form" where the shorter
26179
26197
( wal nfa1 nfab ) ABDBCABEF $.
26180
26198
26181
26199
${
26182
- $d x y $. $d y A $. $d y B $.
26200
+ $d x y $. $d y A $. $d y B $. $d y ph $.
26183
26201
nfeqd.1 $e |- ( ph -> F/_ x A ) $.
26184
- $( Consequence of the not-free predicate. (Contributed by Mario Carneiro,
26185
- 11-Aug-2016.) $)
26186
- nfcrd $p |- ( ph -> F/ x y e. A ) $=
26187
- ( wnfc cv wcel wnf nfcr syl ) ABDFCGDHBIEBCDJK $.
26188
-
26189
- $d y ph $.
26190
26202
nfeqd.2 $e |- ( ph -> F/_ x B ) $.
26191
26203
$( Hypothesis builder for equality. (Contributed by Mario Carneiro,
26192
26204
7-Oct-2016.) $)
@@ -26208,15 +26220,8 @@ choice between (what we call) a "definitional form" where the shorter
26208
26220
11-Aug-2016.) Remove dependency on ~ ax-13 . (Revised by Wolf Lammen,
26209
26221
10-Dec-2019.) $)
26210
26222
nfnfc $p |- F/ x F/_ y A $=
26211
- ( vz wnfc cv wcel wnf wal df-nfc nfcr ax-mp nfnf nfal nfxfr ) BCFEGCHZBIZ
26212
- EJABECKRAEQABACFQAIDAECLMNOP $.
26213
-
26214
- $( Alternate proof of ~ nfnfc . Shorter but requiring more axioms.
26215
- (Contributed by Mario Carneiro, 11-Aug-2016.)
26216
- (Proof modification is discouraged.) (New usage is discouraged.) $)
26217
- nfnfcALT $p |- F/ x F/_ y A $=
26218
- ( vz wnfc cv wcel wnf wal df-nfc nfcri nfnf nfal nfxfr ) BCFEGCHZBIZEJABE
26219
- CKQAEPABAECDLMNO $.
26223
+ ( vz wnfc cv wcel wnf wal df-nfc nfcriv nfnf nfal nfxfr ) BCFEGCHZBIZEJAB
26224
+ ECKQAEPABAECDLMNO $.
26220
26225
26221
26226
nfeq.2 $e |- F/_ x B $.
26222
26227
$( Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.)
@@ -26388,8 +26393,7 @@ choice between (what we call) a "definitional form" where the shorter
26388
26393
7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid
26389
26394
~ ax-13 . (Revised by Wolf Lammen, 10-May-2023.) $)
26390
26395
cleqf $p |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) $=
26391
- ( vy cv wcel wnfc wnf nfcr ax-mp nf5ri cleqh ) AFBCFGZBHZAABIPAJDAFBKLMOC
26392
- HZAACIQAJEAFCKLMN $.
26396
+ ( vy cv wcel nfcriv nf5ri cleqh ) AFBCFGZBHAAFBDIJLCHAAFCEIJK $.
26393
26397
26394
26398
$( Obsolete version of ~ cleqf as of 10-May-2023. (Contributed by NM,
26395
26399
26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof
@@ -26410,12 +26414,21 @@ choice between (what we call) a "definitional form" where the shorter
26410
26414
$}
26411
26415
26412
26416
${
26413
- $d x y $. $d y A $. $d y ph $.
26414
26417
abeq2f.0 $e |- F/_ x A $.
26415
26418
$( Equality of a class variable and a class abstraction. In this version,
26416
26419
the fact that ` x ` is a non-free variable in ` A ` is explicitly stated
26417
- as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) $)
26420
+ as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) Avoid
26421
+ ~ ax-13 . (Revised by Wolf Lammen, 13-May-2023.) $)
26418
26422
abeq2f $p |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) $=
26423
+ ( cab wceq cv wcel wb wal nfab1 cleqf abid bibi2i albii bitri ) CABEZFBGZ
26424
+ CHZRQHZIZBJSAIZBJBCQDABKLUAUBBTASABMNOP $.
26425
+
26426
+ $d x y $. $d y A $. $d y ph $.
26427
+ $( Equality of a class variable and a class abstraction. In this version,
26428
+ the fact that ` x ` is a non-free variable in ` A ` is explicitly stated
26429
+ as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.)
26430
+ (Proof modification is discouraged.) (New usage is discouraged.) $)
26431
+ abeq2fOLD $p |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) $=
26419
26432
( vy cab wceq cv wcel wb wal nfcrii hbab1 cleqh abid bibi2i albii bitri )
26420
26433
CABFZGBHZCIZTSIZJZBKUAAJZBKBECSBECDLABEMNUCUDBUBAUAABOPQR $.
26421
26434
$}
0 commit comments