@@ -50480,12 +50480,39 @@ under a function is also a set (see the variant ~ funimaex ). Although
50480
50480
$}
50481
50481
50482
50482
${
50483
- $d x y z w $.
50483
+ $d z ph $. $d w x y z $.
50484
+ $( Version of ~ axrep4 with a disjoint variable condition, requiring fewer
50485
+ axioms. (Contributed by Matthew House, 18-Sep-2025.) $)
50486
+ axrep4v $p |- ( A. x E. z A. y ( ph -> y = z ) ->
50487
+ E. z A. y ( y e. z <-> E. x ( x e. w /\ ph ) ) ) $=
50488
+ ( wal weq wi wex wel wa wb ax-rep 19.3v imbi1i albii exbii anbi2i 3imtr3i
50489
+ bibi2i ) ADFZCDGZHZCFZDIZBFCDJZBEJZUAKZBIZLZCFZDIAUBHZCFZDIZBFUFUGAKZBIZL
50490
+ ZCFZDIAEDCBMUEUNBUDUMDUCULCUAAUBADNZOPQPUKURDUJUQCUIUPUFUHUOBUAAUGUSRQTPQ
50491
+ S $.
50492
+ $( $j usage 'axrep4v' avoids 'ax-12'; $)
50493
+ $}
50494
+
50495
+ ${
50496
+ $d w x y z $.
50484
50497
axrep4.1 $e |- F/ z ph $.
50485
50498
$( A more traditional version of the Axiom of Replacement. (Contributed by
50486
- NM, 14-Aug-1994.) $)
50499
+ NM, 14-Aug-1994.) (Proof shortened by Matthew House, 18-Sep-2025.) $)
50487
50500
axrep4 $p |- ( A. x E. z A. y ( ph -> y = z ) ->
50488
50501
E. z A. y ( y e. z <-> E. x ( x e. w /\ ph ) ) ) $=
50502
+ ( wal weq wi wex wel wa wb ax-rep 19.3 imbi1i albii exbii anbi2i bibi2i
50503
+ 3imtr3i ) ADGZCDHZIZCGZDJZBGCDKZBEKZUBLZBJZMZCGZDJAUCIZCGZDJZBGUGUHALZBJZ
50504
+ MZCGZDJAEDCBNUFUOBUEUNDUDUMCUBAUCADFOZPQRQULUSDUKURCUJUQUGUIUPBUBAUHUTSRT
50505
+ QRUA $.
50506
+ $}
50507
+
50508
+ ${
50509
+ $d x y z w $.
50510
+ axrep4OLD.1 $e |- F/ z ph $.
50511
+ $( Obsolete version of ~ axrep4 as of 18-Sep-2025. (Contributed by NM,
50512
+ 14-Aug-1994.) (Proof modification is discouraged.)
50513
+ (New usage is discouraged.) $)
50514
+ axrep4OLD $p |- ( A. x E. z A. y ( ph -> y = z ) ->
50515
+ E. z A. y ( y e. z <-> E. x ( x e. w /\ ph ) ) ) $=
50489
50516
( weq wi wal wex wel wa wb axrep3 19.35i nfv nfa1 nfan nfbi nfal nfex a1i
50490
50517
nfe1 elequ2 19.3 anbi2i exbii bibi12d albidv cbvexv1 sylib ) ACDGHCIDJZBI
50491
50518
CBKZBEKZADIZLZBJZMZCIZBJCDKZUNALZBJZMZCIZDJULUSBABDCENOUSVDBDURDCUMUQDUMD
@@ -50515,8 +50542,21 @@ under a function is also a set (see the variant ~ funimaex ). Although
50515
50542
50516
50543
${
50517
50544
$d w x y z $. $d y ph $.
50518
- $( A condensed form of ~ ax-rep . (Contributed by SN, 18-Sep-2023.) $)
50545
+ $( A condensed form of ~ ax-rep . (Contributed by SN, 18-Sep-2023.)
50546
+ (Proof shortened by Matthew House, 18-Sep-2025.) $)
50519
50547
axrep6 $p |- ( A. w E* z ph -> E. y A. z ( z e. y <-> E. w e. x ph ) ) $=
50548
+ ( weq wi wal wex wel wa wb wmo cv wrex axrep4v df-mo albii df-rex bibi2i
50549
+ exbii 3imtr4i ) ADCFGDHCIZEHDCJZEBJAKEIZLZDHZCIADMZEHUDAEBNZOZLZDHZCIAEDC
50550
+ BPUHUCEADCQRULUGCUKUFDUJUEUDAEUISTRUAUB $.
50551
+ $}
50552
+
50553
+ ${
50554
+ $d w x y z $. $d y ph $.
50555
+ $( Obsolete version of ~ axrep6 as of 18-Sep-2025. (Contributed by SN,
50556
+ 18-Sep-2023.) (Proof modification is discouraged.)
50557
+ (New usage is discouraged.) $)
50558
+ axrep6OLD $p |- ( A. w E* z ph -> E. y A. z ( z e. y <-> E. w e. x ph ) )
50559
+ $=
50520
50560
( wal weq wi wex wel wa wb wmo cv wrex ax-rep df-mo 19.3v albii exbii
50521
50561
imbi1i bitr4i rexbii df-rex bitr3i bibi2i 3imtr4i ) ACFZDCGZHZDFZCIZEFDCJ
50522
50562
ZEBJUHKEIZLZDFZCIADMZEFUMAEBNZOZLZDFZCIABCDEPUQULEUQAUIHZDFZCIULADCQUKVCC
@@ -50686,12 +50726,35 @@ under a function is also a set (see the variant ~ funimaex ). Although
50686
50726
$}
50687
50727
50688
50728
${
50689
- $d x ph z $. $d x y z $.
50729
+ $d x y z $. $d x y ph $.
50730
+ bm1.3iiv.1 $e |- E. x A. z ( ph -> z e. x ) $.
50731
+ $( Version of ~ bm1.3ii combined with a change of variable, requiring fewer
50732
+ axioms. (Contributed by Matthew House, 18-Sep-2025.) $)
50733
+ bm1.3iiv $p |- E. y A. z ( z e. y <-> ph ) $=
50734
+ ( wel wi wal wb wex wa ax-sep bimsc1 ex al2imi eximdv mpi exlimiiv ) ADBF
50735
+ ZGZDHZDCFZAIZDHZCJZBUAUBSAKIZDHZCJUEADCBLUAUGUDCTUFUCDTUFUCASUBMNOPQER $.
50736
+ $( $j usage 'bm1.3iiv' avoids 'ax-9' 'ax-12'; $)
50737
+ $}
50738
+
50739
+ ${
50740
+ $d x y z $. $d x z ph $.
50690
50741
bm1.3ii.1 $e |- E. x A. y ( ph -> y e. x ) $.
50691
50742
$( Convert implication to equivalence using the Separation Scheme
50692
50743
(Aussonderung) ~ ax-sep . Similar to Theorem 1.3(ii) of [BellMachover]
50693
- p. 463. (Contributed by NM, 21-Jun-1993.) $)
50744
+ p. 463. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Matthew
50745
+ House, 18-Sep-2025.) $)
50694
50746
bm1.3ii $p |- E. x A. y ( y e. x <-> ph ) $=
50747
+ ( vz wel wi wal wex weq elequ2 imbi2d albidv cbvexvw mpbi bm1.3iiv ) AEBC
50748
+ ACBFZGZCHZBIACEFZGZCHZEIDSUBBEBEJZRUACUCQTABECKLMNOP $.
50749
+ $}
50750
+
50751
+ ${
50752
+ $d x ph z $. $d x y z $.
50753
+ bm1.3iiOLD.1 $e |- E. x A. y ( ph -> y e. x ) $.
50754
+ $( Obsolete version of ~ bm1.3ii as of 18-Sep-2025. (Contributed by NM,
50755
+ 21-Jun-1993.) (Proof modification is discouraged.)
50756
+ (New usage is discouraged.) $)
50757
+ bm1.3iiOLD $p |- E. x A. y ( y e. x <-> ph ) $=
50695
50758
( vz wel wi wal wa wb wex 19.42v bimsc1 eximi sylbir elequ2 imbi2d albidv
50696
50759
alanimi weq cbvexvw mpbi ax-sep exan exlimiiv ) ACEFZGZCHZCBFZUFAIJZCHZBK
50697
50760
ZIZUIAJZCHZBKZEUMUHUKIZBKUPUHUKBLUQUOBUGUJUNCAUFUIMSNOUHULEAUIGZCHZBKUHEK
@@ -52034,7 +52097,7 @@ That theorem bundles the theorems ( ` |- E. x ( x = y -> z e. x ) ` with
52034
52097
( vw wel wn wal wex ax-pow pm2.21 alimi a1i imim1d alimdv eximdv exlimiiv
52035
52098
wi mpi ax-nul ) CDEZFCGZCBEZFZCGZBAEZQZBGZAHZDUAUBTQZCGZUEQZBGZAHUHDABCIU
52036
52099
AULUGAUAUKUFBUAUDUJUEUDUJQUAUCUICUBTJKLMNORDCSP $.
52037
- $( $j usage 'axprlem1' avoids 'ax-ext' 'ax-sep'; $)
52100
+ $( $j usage 'axprlem1' avoids 'ax-8' 'ax-9' 'ax-12' 'ax- ext' 'ax-sep'; $)
52038
52101
$}
52039
52102
52040
52103
${
@@ -52047,78 +52110,129 @@ That theorem bundles the theorems ( ` |- E. x ( x = y -> z e. x ) ` with
52047
52110
alimdv eximdv mpi axprlem1 exlimiiv ) DCFGDHZCEFZIZCHZUDCBJZKZBAFZIZBHZAL
52048
52111
ZEUGCBFZUEIZCHZUJIZBHZALUMEABCMUGURULAUGUQUKBUGUIUPUJUIUNUDIZCHUGUPUDCUHN
52049
52112
UFUSUOCUDUEUNOPQRSTUAECDUBUC $.
52050
- $( $j usage 'axprlem2' avoids 'ax-ext' 'ax-sep'; $)
52113
+ $( $j usage 'axprlem2' avoids 'ax-8' 'ax-9' 'ax-12' 'ax- ext' 'ax-sep'; $)
52051
52114
$}
52052
52115
52053
52116
${
52054
52117
$d x z w $. $d y z w $. $d z w n $. $d z w s p $.
52055
52118
$( Lemma for ~ axpr . Eliminate the antecedent of the relevant replacement
52056
- instance. (Contributed by Rohan Ridenour, 10-Aug-2023.) $)
52119
+ instance. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof
52120
+ shortened by Matthew House, 18-Sep-2025.) $)
52057
52121
axprlem3 $p |- E. z A. w ( w e. z <->
52058
52122
E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) $=
52123
+ ( wel wex weq wif wi wal wa wb biimpd equeuclr syl9r alrimdv spimevw mpg
52124
+ axrep4v ifptru wn ifpfal pm2.61i ) EFHEIZDAJZDBJZKZDCJZLZDMZCIZDCHFGHUJNF
52125
+ IODMCIFUJFDCGUBUGUNUGUMCACAJZUGULDUGUJUHUOUKUGUJUHUGUHUIUCPCDAQRSTUGUDZUM
52126
+ CBCBJZUPULDUPUJUIUQUKUPUJUIUGUHUIUEPCDBQRSTUFUA $.
52127
+ $( $j usage 'axprlem3' avoids 'ax-8' 'ax-9' 'ax-12' 'ax-ext'; $)
52128
+ $}
52129
+
52130
+ ${
52131
+ $d w s $. $d v s $.
52132
+ axprlem4.1 $e |- E. s A. n ph $.
52133
+ axprlem4.2 $e |- ( ph -> ( n e. s -> A. t -. t e. n ) ) $.
52134
+ axprlem4.3 $e |- ( A. n ph ->
52135
+ ( if- ( E. n n e. s , w = x , w = y ) <-> w = v ) ) $.
52136
+ $( Lemma for ~ axpr . If an existing set of empty sets corresponds to one
52137
+ element of the pair, then the element is included in any superset of the
52138
+ set whose existence is asserted by the axiom of replacement.
52139
+ (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ,
52140
+ 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) $)
52141
+ axprlem4 $p |- ( A. s ( A. n e. s A. t -. t e. n -> s e. p ) -> ( w = v ->
52142
+ E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) ) $=
52143
+ ( wel wn wal cv wi wa wex weq wral wif alimi df-ral sylibr imim1i aleximi
52144
+ ancrd mpi biimprcd anim2d eximdv syl5com ) FGMNFOZGHPZUAZHIMZQZHOZUQAGOZR
52145
+ ZHSZDETZUQGHMZGSDBTDCTUBZRZHSUSUTHSVBJURUTVAHURUTUQUTUPUQUTVDUNQZGOUPAVGG
52146
+ KUCUNGUOUDUEUFUHUGUIVCVAVFHVCUTVEUQUTVEVCLUJUKULUM $.
52147
+ $( $j usage 'axprlem4' avoids 'ax-8' 'ax-9' 'ax-12' 'ax-ext'; $)
52148
+ $}
52149
+
52150
+ ${
52151
+ $d x z w s p $. $d y z w s p $. $d z w t n s p $.
52152
+ $( Unabbreviated version of the Axiom of Pairing of ZF set theory, derived
52153
+ as a theorem from the other axioms.
52154
+
52155
+ This theorem should not be referenced by any proof. Instead, use
52156
+ ~ ax-pr below so that the uses of the Axiom of Pairing can be more
52157
+ easily identified.
52158
+
52159
+ For a shorter proof using ~ ax-ext , see ~ axprALT . (Contributed by
52160
+ NM, 14-Nov-2006.) Remove dependency on ~ ax-ext . (Revised by Rohan
52161
+ Ridenour, 10-Aug-2023.) (Proof shortened by BJ, 13-Aug-2023.) (Proof
52162
+ shortened by Matthew House, 18-Sep-2025.) Use ~ ax-pr instead.
52163
+ (New usage is discouraged.) $)
52164
+ axpr $p |- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) $=
52165
+ ( vt vn vs vp wel wn wal cv wral wi weq wo wex wb ax-nul axprlem4 wa exbi
52166
+ wif axprlem3 axprlem1 bm1.3iiv biimp mpbiri ifptru syl pm2.21 alnex sylbi
52167
+ ifpfal jaod imbi2 syl5ibrcom alimdv eximdv mpi axprlem2 exlimiiv ) EFIJEK
52168
+ ZFGLMGHIZNGKZDAOZDBOZPZDCIZNZDKZCQZHVEVIVDFGIZFQZVFVGUCZUAGQZRZDKZCQVLABC
52169
+ DFGHUDVEVRVKCVEVQVJDVEVJVQVHVPNVEVFVPVGVMVCRZABDAEFGHVCCGFCFEUEUFVMVCUGVS
52170
+ FKZVNVOVFRVTVNVCFQFESVMVCFUBUHVNVFVGUIUJTVMJZABDBEFGHGFSVMVCUKWAFKVNJVOVG
52171
+ RVMFULVNVFVGUNUMTUOVIVPVHUPUQURUSUTHGFEVAVB $.
52172
+ $( $j usage 'axpr' avoids 'ax-8' 'ax-9' 'ax-10' 'ax-11' 'ax-12'
52173
+ 'ax-ext'; $)
52174
+ $}
52175
+
52176
+ ${
52177
+ $d x z w $. $d y z w $. $d z w n $. $d z w s p $.
52178
+ $( Obsolete version of ~ axprlem3 as of 18-Sep-2025. (Contributed by Rohan
52179
+ Ridenour, 10-Aug-2023.) (Proof modification is discouraged.)
52180
+ (New usage is discouraged.) $)
52181
+ axprlem3OLD $p |- E. z A. w ( w e. z <->
52182
+ E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) $=
52059
52183
( cv wcel wex weq wi wal wa ax6evr biimpd alrimiv expcom eximdv mpi wb wn
52060
52184
wif axrep4 ifptru equtrr sylan9r ifpfal adantl simpl equtr syl6ci pm2.61i
52061
52185
nfv mpg ) EHFHZIEJZDAKZDBKZUCZDCKZLZDMZCJZDHCHIUPGHIUTNFJUADMCJFUTFDCGUTC
52062
52186
UNUDUQVDUQACKZCJVDCAOUQVEVCCVEUQVCVEUQNVBDUQUTURVEVAUQUTURUQURUSUEPACDUFU
52063
52187
GQRSTUQUBZBCKZCJVDCBOVFVGVCCVGVFVCVGVFNZVBDVHUTUSVGVAVFUTUSLVGVFUTUSUQURU
52064
52188
SUHPUIVGVFUJDBCUKULQRSTUMUO $.
52065
- $( $j usage 'axprlem3 ' avoids 'ax-ext'; $)
52189
+ $( $j usage 'axprlem3OLD ' avoids 'ax-ext'; $)
52066
52190
$}
52067
52191
52068
52192
${
52069
52193
$d x s $. $d w s $. $d t n s $.
52070
- $( Lemma for ~ axpr . The first element of the pair is included in any
52071
- superset of the set whose existence is asserted by the axiom of
52072
- replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by
52073
- BJ, 13-Aug-2023.) $)
52074
- axprlem4 $p |- ( ( A. s ( A. n e. s A. t -. t e. n -> s e. p ) /\ w = x )
52075
- -> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) $=
52194
+ $( Obsolete version of ~ axprlem4 as of 18-Sep-2025. (Contributed by Rohan
52195
+ Ridenour, 10-Aug-2023.) (Proof modification is discouraged.)
52196
+ (New usage is discouraged.) $)
52197
+ axprlem4OLD $p |- ( ( A. s ( A. n e. s A. t -. t e. n -> s e. p )
52198
+ /\ w = x ) -> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) $=
52076
52199
( wel wn wal cv wral wi weq wa wex nfa1 sp eximd mpi wif axprlem1 bm1.3ii
52077
52200
wb nfv nfan biimp alimi df-ral sylibr mpan9 adantrr ax-nul biimprd simprr
52078
52201
ifptru biimpar syl2an2r jca expcom ) DEHIDJZEFKZLZFGHZMZFJZCANZOZEFHZVAUD
52079
52202
ZEJZFPVDVIEPZVGCBNZUAZOZFPVAFEFEDUBUCVHVKVOFVFVGFVEFQVGFUEUFVKVHVOVKVHOVD
52080
52203
VNVKVFVDVGVKVCVFVDVKVIVAMZEJVCVJVPEVIVAUGUHVAEVBUIUJVEFRUKULVKVLVHVGVNVKV
52081
52204
AEPVLEDUMVKVAVIEVJEQVKVIVAVJERUNSTVKVFVGUOVLVNVGVLVGVMUPUQURUSUTST $.
52082
- $( $j usage 'axprlem4 ' avoids 'ax-ext'; $)
52205
+ $( $j usage 'axprlem4OLD ' avoids 'ax-ext'; $)
52083
52206
$}
52084
52207
52085
52208
${
52086
52209
$d y s $. $d w s $. $d n s $.
52087
- $( Lemma for ~ axpr . The second element of the pair is included in any
52088
- superset of the set whose existence is asserted by the axiom of
52089
- replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by
52090
- BJ, 13-Aug-2023.) $)
52091
- axprlem5 $p |- ( ( A. s ( A. n e. s A. t -. t e. n -> s e. p ) /\ w = y )
52092
- -> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) $=
52210
+ $( Obsolete version of ~ axprlem4 as of 18-Sep-2025. (Contributed by Rohan
52211
+ Ridenour, 10-Aug-2023.) (Proof modification is discouraged.)
52212
+ (New usage is discouraged.) $)
52213
+ axprlem5OLD $p |- ( ( A. s ( A. n e. s A. t -. t e. n -> s e. p )
52214
+ /\ w = y ) -> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) $=
52093
52215
( wel wn wal cv wral wi weq wa wex wif ax-nul nfa1 nfv nfan pm2.21 adantr
52094
52216
alimi df-ral sylibr ad2antrl mpd simpl alnex sylib simprr biimpar syl2anc
52095
52217
sp ifpfal jca expcom eximd mpi ) DEHIDJZEFKZLZFGHZMZFJZCBNZOZEFHZIZEJZFPV
52096
52218
DVIEPZCANZVGQZOZFPFERVHVKVOFVFVGFVEFSVGFTUAVKVHVOVKVHOZVDVNVPVCVDVPVIVAMZ
52097
52219
EJZVCVKVRVHVJVQEVIVAUBUDUCVAEVBUEUFVFVEVKVGVEFUOUGUHVPVLIZVGVNVPVKVSVKVHU
52098
52220
IVIEUJUKVKVFVGULVSVNVGVLVMVGUPUMUNUQURUSUT $.
52099
- $( $j usage 'axprlem5 ' avoids 'ax-ext'; $)
52221
+ $( $j usage 'axprlem5OLD ' avoids 'ax-ext'; $)
52100
52222
$}
52101
52223
52102
52224
${
52103
52225
$d x z w s p $. $d y z w s p $. $d z w t n s p $.
52104
- $( Unabbreviated version of the Axiom of Pairing of ZF set theory, derived
52105
- as a theorem from the other axioms.
52106
-
52107
- This theorem should not be referenced by any proof. Instead, use
52108
- ~ ax-pr below so that the uses of the Axiom of Pairing can be more
52109
- easily identified.
52110
-
52111
- For a shorter proof using ~ ax-ext , see ~ axprALT . (Contributed by
52112
- NM, 14-Nov-2006.) Remove dependency on ~ ax-ext . (Revised by Rohan
52113
- Ridenour, 10-Aug-2023.) (Proof shortened by BJ, 13-Aug-2023.) Use
52114
- ~ ax-pr instead. (New usage is discouraged.) $)
52115
- axpr $p |- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) $=
52226
+ $( Obsolete version of ~ axpr as of 18-Sep-2025. (Contributed by NM,
52227
+ 14-Nov-2006.) (Proof modification is discouraged.)
52228
+ (New usage is discouraged.) $)
52229
+ axprOLD $p |- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) $=
52116
52230
( vt vn vs vp wel wn wal cv wral wi weq wo wex wif wa wb biimpr eximii ex
52117
- axprlem3 alimi axprlem4 axprlem5 jaodan imim1d alimdv eximdv mpi axprlem2
52118
- exlimiiv ) EFIJEKFGLMGHIZNGKZDAOZDBOZPZDCIZNZDKZCQZHUPUOFGIFQUQURRSGQZUTN
52119
- ZDKZCQVCUTVDTZDKVFCABCDFGHUDVGVEDUTVDUAUEUBUPVFVBCUPVEVADUPUSVDUTUPUSVDUP
52120
- UQVDURABDEFGHUFABDEFGHUGUHUCUIUJUKULHGFEUMUN $.
52121
- $( $j usage 'axpr ' avoids 'ax-ext'; $)
52231
+ axprlem3OLD alimi axprlem4OLD axprlem5OLD jaodan imim1d alimdv eximdv mpi
52232
+ axprlem2 exlimiiv ) EFIJEKFGLMGHIZNGKZDAOZDBOZPZDCIZNZDKZCQZHUPUOFGIFQUQU
52233
+ RRSGQZUTNZDKZCQVCUTVDTZDKVFCABCDFGHUDVGVEDUTVDUAUEUBUPVFVBCUPVEVADUPUSVDU
52234
+ TUPUSVDUPUQVDURABDEFGHUFABDEFGHUGUHUCUIUJUKULHGFEUMUN $.
52235
+ $( $j usage 'axprOLD ' avoids 'ax-ext'; $)
52122
52236
$}
52123
52237
52124
52238
${
0 commit comments