Skip to content

Commit 47bf412

Browse files
authored
add more Word/gsum theorems to iset.mm (#4988)
* Add gsumwsubmcl to iset.mm Stated as in set.mm. The proof is basically the set.mm proof but it needs changes to show decidability and also for differences in gsum and seq theorems. * copy gsumwcl from set.mm to iset.mm * Add seq1g to iset.mm This is seq1 from set.mm with two set existence hypotheses. In the case where F and .+ are sets this is much simpler than using seq3-1 directly. The proof is via seq3-1 and is not difficult but it is a handful of steps. * Add seqp1g to iset.mm This is seqp1 from set.mm with two additional set existence conditions. The proof uses seq3p1 * Add seqclg to iset.mm This is seqcl from set.mm with additional set existence conditions. The proof is seq3clss plus a handful of steps. * Add seqhomog to iset.mm This is seqhomo from set.mm with added set existence hypotheses. The proof is the set.mm proof except that it needs small changes in a number of places to apply the set existence hypotheses. * Add gsumwmhm to iset.mm Stated as in set.mm. The proof is basically the same as in set.mm but it needs changes in several places for differences in theorems about finite sets, gsum , and seq .
1 parent 8726ca0 commit 47bf412

File tree

2 files changed

+201
-11
lines changed

2 files changed

+201
-11
lines changed

iset.mm

Lines changed: 160 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -108592,6 +108592,19 @@ the previous value and the value of the input sequence (second operand).
108592108592
ABCNODVGEFGHVKIJVBVC $.
108593108593
$}
108594108594

108595+
${
108596+
$d .+ x y $. $d F x y $. $d M x y $. $d V x y $. $d W x y $.
108597+
$( Value of the sequence builder function at its initial value.
108598+
(Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon,
108599+
19-Aug-2025.) $)
108600+
seq1g $p |- ( ( M e. ZZ /\ F e. V /\ .+ e. W ) ->
108601+
( seq M ( .+ , F ) ` M ) = ( F ` M ) ) $=
108602+
( vx vy cz wcel w3a cvv simp1 cv cuz cfv fvexg 3ad2antl2 wa co simprl
108603+
simpl3 simprr ovexg syl3anc seq3-1 ) CHIZBDIZAEIZJZFGAKBCUFUGUHLUGUFFMZCN
108604+
OZIUJBOKIUHUJBDUKPQUIUJKIZGMZKIZRZRULUHUNUJUMASKIUIULUNTUFUGUHUOUAUIULUNU
108605+
BUJUMAKEKUCUDUE $.
108606+
$}
108607+
108595108608
${
108596108609
$d .+ a b x y $. $d .+ s t w x y z $. $d .+ u v w x y z $. $d F b x y $.
108597108610
$d F c x $. $d F s t w x y z $. $d F u v w x y z $. $d M a b x y $.
@@ -108644,6 +108657,20 @@ the previous value and the value of the input sequence (second operand).
108644108657
VIULUQVJLMHWAWBEWFWJWGWCWIDPEWDHTWEWIWCDWDHNFOVLVMWCWAWIDVNWGVFVOVPVQ $.
108645108658
$}
108646108659

108660+
${
108661+
$d .+ x y $. $d F x y $. $d M x y $. $d N x y $. $d V x y $.
108662+
$d W x y $.
108663+
$( Value of the sequence builder function at a successor. (Contributed by
108664+
Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.) $)
108665+
seqp1g $p |- ( ( N e. ( ZZ>= ` M ) /\ F e. V /\ .+ e. W ) ->
108666+
( seq M ( .+ , F ) ` ( N + 1 ) ) =
108667+
( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) $=
108668+
( vx vy cuz cfv wcel w3a cvv simp1 cv wa simpl2 vex fvexg sylancl mp3an2i
108669+
co simpl3 a1i ovexg seq3p1 ) DCIJZKZBEKZAFKZLZGHAMBCDUHUIUJNUKGOZUGKZPUIU
108670+
LMKZULBJMKUHUIUJUMQGRZULBEMSTUNUKUNHOZMKZPZPZUJUQULUPAUBMKUOUHUIUJURUCUQU
108671+
SHRUDULUPAMFMUEUAUF $.
108672+
$}
108673+
108647108674
${
108648108675
$d .+ a b x y $. $d .+ w x y z $. $d C a b x y $. $d C w x y z $.
108649108676
$d D a b x y $. $d F a b x $. $d F w x z $. $d M a x $. $d M w x z $.
@@ -108766,6 +108793,24 @@ the previous value and the value of the input sequence (second operand).
108766108793
VNXFWMXEVIXFWNVRPAWMHIWKVJVEUSVKUTVLVMVOVPVQ $.
108767108794
$}
108768108795

108796+
${
108797+
$d F x y $. $d .+ x y $. $d M x y $. $d N x y $. $d S x y $.
108798+
$d ph x y $.
108799+
seqcl.1 $e |- ( ph -> N e. ( ZZ>= ` M ) ) $.
108800+
seqcl.2 $e |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) $.
108801+
seqcl.3 $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) $.
108802+
seqclg.f $e |- ( ph -> F e. V ) $.
108803+
seqclg.p $e |- ( ph -> .+ e. W ) $.
108804+
$( Closure properties of the recursive sequence builder. (Contributed by
108805+
Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro,
108806+
27-May-2014.) $)
108807+
seqclg $p |- ( ph -> ( seq M ( .+ , F ) ` N ) e. S ) $=
108808+
( cvv cv cfv wcel wa cuz adantr vex fvexg sylancl wss ssv co simprr ovexg
108809+
a1i mp3an2ani seq3clss ) ABCDEPFGHKABQZGUARSZTFISZUNPSZUNFRPSAUPUONUBBUCZ
108810+
UNFIPUDUELMEPUFAEUGUKUQADJSUQCQZPSZTUTUNUSDUHPSUROAUQUTUIUNUSDPJPUJULUM
108811+
$.
108812+
$}
108813+
108769108814
${
108770108815
$d .+ x y $. $d F x y $. $d M x y $. $d N x y $. $d S x y $.
108771108816
$d ph x y $.
@@ -110183,6 +110228,57 @@ seq K ( .+ , G ) ) $=
110183110228
VKTUPUQUR $.
110184110229
$}
110185110230

110231+
${
110232+
$d n x y F $. $d n x y H $. $d n x y M $. $d n x y N $. $d n x y ph $.
110233+
$d n x G $. $d x y K $. $d n x y .+ $. $d n x y Q $. $d x y S $.
110234+
$d x y Z $.
110235+
seqhomo.1 $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) $.
110236+
seqhomo.2 $e |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) $.
110237+
${
110238+
seqhomo.3 $e |- ( ph -> N e. ( ZZ>= ` M ) ) $.
110239+
seqhomo.4 $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) ->
110240+
( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) $.
110241+
seqhomo.5 $e |- ( ( ph /\ x e. ( M ... N ) ) ->
110242+
( H ` ( F ` x ) ) = ( G ` x ) ) $.
110243+
seqhomog.f $e |- ( ph -> F e. V ) $.
110244+
seqhomog.g $e |- ( ph -> G e. W ) $.
110245+
seqhomog.p $e |- ( ph -> .+ e. X ) $.
110246+
seqhomog.q $e |- ( ph -> Q e. Y ) $.
110247+
$( Apply a homomorphism to a sequence. (Contributed by Mario Carneiro,
110248+
28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) $)
110249+
seqhomog $p |- ( ph -> ( H ` ( seq M ( .+ , F ) ` N ) ) =
110250+
( seq M ( Q , G ) ` N ) ) $=
110251+
( vn cfz co wcel cseq cfv wceq cuz eluzfz2 syl wi cv caddc eleq1 2fveq3
110252+
c1 fveq2 eqeq12d imbi12d imbi2d ralrimiva eluzfz1 rspcdva eluzel2 seq1g
110253+
cz syl3anc fveq2d 3eqtr4d a1d peano2fzr adantl expr imim1d oveq1 simprl
110254+
wa adantr seqp1g wral ralrimivva wss elfzuz3 3syl sselda adantlr syldan
110255+
fzss2 seqclg eleq1d simprr fvoveq1 oveq1d oveq2 oveq2d rspc2v imbitrrid
110256+
syl2anc mpd 3eqtrd animpimp2impd uzind4i mpcom ) AKJKUFUGZUHZKDGJUIZUJI
110257+
UJZKEHJUIZUJZUKZAKJULUJZUHZXIRJKUMUNXPAXIXNUOZRABUPZXHUHZXRXJUJIUJZXRXL
110258+
UJZUKZUOZUOAJXHUHZJXJUJZIUJZJXLUJZUKZUOZUOAUEUPZXHUHZYJXJUJZIUJZYJXLUJZ
110259+
UKZUOZUOAYJUTUQUGZXHUHZYQXJUJZIUJZYQXLUJZUKZUOZUOAXQUOBUEJKXRJUKZYCYIAU
110260+
UDXSYDYBYHXRJXHURUUDXTYFYAYGXRJIXJUSXRJXLVAVBVCVDXRYJUKZYCYPAUUEXSYKYBY
110261+
OXRYJXHURUUEXTYMYAYNXRYJIXJUSXRYJXLVAVBVCVDXRYQUKZYCUUCAUUFXSYRYBUUBXRY
110262+
QXHURUUFXTYTYAUUAXRYQIXJUSXRYQXLVAVBVCVDXRKUKZYCXQAUUGXSXIYBXNXRKXHURUU
110263+
GXTXKYAXMXRKIXJUSXRKXLVAVBVCVDAYHYDAJGUJZIUJZJHUJZYFYGAXRGUJZIUJZXRHUJZ
110264+
UKZUUIUUJUKBXHJUUDUULUUIUUMUUJXRJIGUSXRJHVAVBAUUNBXHTVEZAXPYDRJKVFUNVGA
110265+
YEUUHIAJVJUHZGLUHZDNUHZYEUUHUKAXPUUPRJKVHUNZUAUCDGJLNVIVKVLAUUPHMUHZEOU
110266+
HZYGUUJUKUUSUBUDEHJMOVIVKVMVNYJXOUHZAYPYRUUBYOAUVBWAYRYKYOAUVBYRYKUVBYR
110267+
WAZYKAYJJKVOVPZVQVRYOUUBAUVCWAZYMYQHUJZEUGZYNUVFEUGZUKYMYNUVFEVSUVEYTUV
110268+
GUUAUVHUVEYTYLYQGUJZDUGZIUJZYMUVIIUJZEUGZUVGUVEYSUVJIUVEUVBUUQUURYSUVJU
110269+
KAUVBYRVTZAUUQUVCUAWBZAUURUVCUCWBZDGJYJLNWCVKVLUVEXRCUPZDUGZIUJZXRIUJZU
110270+
VQIUJZEUGZUKZCFWDBFWDZUVKUVMUKZAUWDUVCAUWCBCFFSWEWBUVEYLFUHUVIFUHZUWDUW
110271+
EUOUVEBCDFGJYJLNUVNUVEXRJYJUFUGZUHXSUUKFUHZUVEUWGXHXRUVEYKKYJULUJUHUWGX
110272+
HWFUVDYJJKWGYJJKWLWHWIAXSUWHUVCQWJWKAXRFUHUVQFUHWAUVRFUHUVCPWJUVOUVPWMU
110273+
VEUWHUWFBXHYQUUFUUKUVIFXRYQGVAWNAUWHBXHWDUVCAUWHBXHQVEWBAUVBYRWOZVGUWCU
110274+
WEYLUVQDUGZIUJZYMUWAEUGZUKBCYLUVIFFXRYLUKZUVSUWKUWBUWLXRYLUVQIDWPUWMUVT
110275+
YMUWAEXRYLIVAWQVBUVQUVIUKZUWKUVKUWLUVMUWNUWJUVJIUVQUVIYLDWRVLUWNUWAUVLY
110276+
MEUVQUVIIVAWSVBWTXBXCUVEUVLUVFYMEUVEUUNUVLUVFUKBXHYQUUFUULUVLUUMUVFXRYQ
110277+
IGUSXRYQHVAVBAUUNBXHWDUVCUUOWBUWIVGWSXDUVEUVBUUTUVAUUAUVHUKUVNAUUTUVCUB
110278+
WBAUVAUVCUDWBEHJYJMOWCVKVBXAXEXFXGXC $.
110279+
$}
110280+
$}
110281+
110186110282
${
110187110283
$d x y k w .+ $. $d x y k w F $. $d x y k w M $. $d x y k w N $.
110188110284
$d x y k w ph $. $d x y k w Q $. $d x y k w S $.
@@ -149787,6 +149883,70 @@ everywhere defined internal operation (see ~ mndcl ), whose operation is
149787149883
BEEYOYPFXFXGWGXHXIXJXKXLXHYBYCXNZYCYGXOYBYAXTUWFYSYRDCXPWSYCXQUTXR $.
149788149884
$}
149789149885

149886+
${
149887+
$d x y S $. $d x y G $. $d x y j W $.
149888+
$( Closure of the composite in any submonoid. (Contributed by Stefan
149889+
O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) $)
149890+
gsumwsubmcl $p |- ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) ->
149891+
( G gsum W ) e. S ) $=
149892+
( vx vy vj cfv wcel wa c0 wceq cgsu co cmnd eqid syl ad2antrr cc0 cvv cv
149893+
csubmnd cword wne oveq2 adantl submrcl gsum0g eqtrd subm0cl eqeltrd chash
149894+
c0g c1 cmin cplusg cseq cbs cn0 cn lennncl adantll nnm1nn0 nn0uz eleqtrdi
149895+
cuz cfz cfzo wf wrdf ad2antlr nnzd fzoval feq2d mpbid wss submss gsumval2
149896+
cz fssd fvexg ad4ant24 ffvelcdmda submcl 3expb ad4ant14 ssv simprl adantr
149897+
a1i plusgslid slotex simprr syl3anc seq3clss wo wex cfn wrdfin fin0or n0r
149898+
ovexg orim2i mpjaodan ) ABUAGHZCAUBZHZIZCJKZBCLMZAHCJUCZXGXHIZXIBULGZAXKX
149899+
IBJLMZXLXHXIXMKXGCJBLUDUEXDXMXLKZXFXHXDBNHZXNABUFZBNXLXLOZUGPQUHXDXLAHXFX
149900+
HABXLXQUIQUJXGXJIZXICUKGZUMUNMZBUOGZCRUPGAXRBUQGZYACBRXTNYBOZYAOZXDXOXFXJ
149901+
XPQZXRXTURRVEGZXRXSUSHZXTURHXFXJYGXDACUTVAZXSVBPVCVDZXRRXTVFMZAYBCXRRXSVG
149902+
MZACVHZYJACVHXFYLXDXJACVIVJXRYKYJACXRXSVRHYKYJKXRXSYHVKRXSVLPVMVNZXDAYBVO
149903+
XFXJYBABYCVPQVSVQXRDEYAASCRXTYIXFDTZYFHYNCGSHXDXJYNCXEYFVTWAXRYJAYNCYMWBX
149904+
DYNAHZETZAHZIYNYPYAMZAHZXFXJXDYOYQYSYAABYNYPYDWCWDWEASVOXRAWFWIXRYNSHZYPS
149905+
HZIZIZYTYASHZUUAYRSHXRYTUUAWGUUCXOUUDXRXOUUBYEWHBUONWJWKPXRYTUUAWLYNYPYAS
149906+
SSXAWMWNUJXFXHXJWOZXDXFXHFTCHFWPZWOZUUEXFCWQHUUGACWRFCWSPUUFXJXHFCWTXBPUE
149907+
XC $.
149908+
$}
149909+
149910+
${
149911+
$d x y z B $. $d x y z G $. $d x y z .+ $. $d x y z W $. $d x y z X $.
149912+
gsumwcl.b $e |- B = ( Base ` G ) $.
149913+
$( Closure of the composite of a word in a structure ` G ` . (Contributed
149914+
by Stefan O'Rear, 15-Aug-2015.) $)
149915+
gsumwcl $p |- ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B ) $=
149916+
( cmnd wcel csubmnd cfv cword cgsu co submid gsumwsubmcl sylan ) BEFABGHF
149917+
CAIFBCJKAFABDLABCMN $.
149918+
$}
149919+
149920+
${
149921+
$d x y B $. $d x y H $. $d x y M $. $d x y N $. $d x y j W $.
149922+
gsumwmhm.b $e |- B = ( Base ` M ) $.
149923+
$( Behavior of homomorphisms on finite monoidal sums. (Contributed by
149924+
Stefan O'Rear, 27-Aug-2015.) $)
149925+
gsumwmhm $p |- ( ( H e. ( M MndHom N ) /\ W e. Word B ) ->
149926+
( H ` ( M gsum W ) ) = ( N gsum ( H o. W ) ) ) $=
149927+
( vj co wcel wa c0 wceq cgsu cfv eqid ad2antrr cmnd syl cc0 cvv cmhm ccom
149928+
vx cword wne c0g mhm0 oveq2 adantl mhmrcl1 gsum0g eqtrd fveq2d coeq2 co02
149929+
vy eqtrdi oveq2d mhmrcl2 3eqtr4d chash c1 cmin cplusg cseq cv mndcl 3expb
149930+
sylan cfz cfzo wf wrdf ad2antlr cz cn cfn wb wrdfin hashnncl biimpar nnzd
149931+
fzoval feq2d mpbid ffvelcdmda cn0 cuz nnm1nn0 nn0uz eleqtrdi ad4ant14 wfn
149932+
mhmlin ffnd fvco2 eqcomd simplr adantr plusgslid slotex seqhomog gsumval2
149933+
coexg cbs mhmf fco syl2anc wo wex fin0or n0r orim2i mpjaodan ) BCDUAHZIZE
149934+
AUDZIZJZEKLZCEMHZBNZDBEUBZMHZLEKUEZXSXTJZCUFNZBNZDUFNZYBYDXPYHYILXRXTCDBY
149935+
IYGYGOZYIOZUGPYFYAYGBYFYACKMHZYGXTYAYLLXSEKCMUHUIYFCQIZYLYGLXPYMXRXTCDBUJ
149936+
ZPCQYGYJUKRULUMYFYDDKMHZYIXTYDYOLXSXTYCKDMXTYCBKUBKEKBUNBUOUQURUIYFDQIZYO
149937+
YILXPYPXRXTCDBUSZPDQYIYKUKRULUTXSYEJZEVANZVBVCHZCVDNZESVENZBNYTDVDNZYCSVE
149938+
NYBYDYRUCUPUUAUUCAEYCBSYTXQTTTYRYMUCVFZAIZUPVFZAIZJZUUDUUFUUAHZAIZXPYMXRY
149939+
EYNPZYMUUEUUGUUJAUUACUUDUUFFUUAOZVGVHVIYRSYTVJHZAUUDEYRSYSVKHZAEVLZUUMAEV
149940+
LZXRUUOXPYEAEVMVNYRUUNUUMAEYRYSVOIUUNUUMLYRYSXSYSVPIZYEXSEVQIZUUQYEVRXRUU
149941+
RXPAEVSUIZEVTRWAZWBSYSWCRWDWEZWFYRYTWGSWHNYRUUQYTWGIUUTYSWIRWJWKZXPUUHUUI
149942+
BNUUDBNUUFBNUUCHLZXRYEXPUUEUUGUVCAUUAUUCCDBUUDUUFFUULUUCOZWNVHWLYRUUDUUMI
149943+
ZJUUDYCNZUUDENBNZYREUUMWMUVEUVFUVGLYRUUMAEUVAWOUUMBEUUDWPVIWQXPXRYEWRXSYC
149944+
TIYEBEXOXQXDWSXPUUATIZXRYEXPYMUVHYNCVDQWTXARPXPUUCTIZXRYEXPYPUVIYQDVDQWTX
149945+
ARPXBYRYAUUBBYRAUUAECSYTQFUULUUKUVBUVAXCUMYRDXENZUUCYCDSYTQUVJOZUVDXPYPXR
149946+
YEYQPUVBYRAUVJBVLZUUPUUMUVJYCVLXPUVLXRYEAUVJCDBFUVKXFPUVAUUMAUVJBEXGXHXCU
149947+
TXSUURXTYEXIZUUSUURXTGVFEIGXJZXIUVMGEXKUVNYEXTGEXLXMRRXN $.
149948+
$}
149949+
149790149950
${
149791149951
$d B x y $. $d F x y $. $d G x y $. $d M x y $. $d N x y $.
149792149952
$d ph x y $.

mmil.raw.html

Lines changed: 41 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -7953,15 +7953,27 @@
79537953
</TR>
79547954

79557955
<TR>
7956-
<TD>seq1 , seq1i</TD>
7956+
<TD rowspan="2">seq1 , seq1i</TD>
79577957
<TD>~ seq3-1</TD>
7958+
<td>given closure hypotheses for both ` F ` and ` .+ `</td>
79587959
</TR>
79597960

7961+
<tr>
7962+
<td>~ seq1g</td>
7963+
<td>when ` F ` and ` .+ ` are sets</td>
7964+
</tr>
7965+
79607966
<TR>
7961-
<TD>seqp1 , seqp1i</TD>
7967+
<TD rowspan="2">seqp1 , seqp1i</TD>
79627968
<TD>~ seq3p1</TD>
7969+
<td>given closure hypotheses for both ` F ` and ` .+ `</td>
79637970
</TR>
79647971

7972+
<tr>
7973+
<td>~ seqp1g</td>
7974+
<td>when ` F ` and ` .+ ` are sets</td>
7975+
</tr>
7976+
79657977
<TR>
79667978
<TD>seqm1</TD>
79677979
<TD>~ seq3m1</TD>
@@ -7975,13 +7987,23 @@
79757987
</TR>
79767988

79777989
<TR>
7978-
<TD>seqcl</TD>
7979-
<TD>~ seqf , ~ seq3clss</TD>
7980-
<TD>~ seqf requires that ` F ` be defined on ` ( ZZ>= `` M ) ` not
7981-
merely ` ( M ... N ) ` . This requirement is relaxed somewhat in
7982-
~ seq3clss .</TD>
7990+
<TD rowspan="3">seqcl</TD>
7991+
<TD>~ seqf</TD>
7992+
<TD>when ` F ` is defined on ` ( ZZ>= `` M ) ` not
7993+
merely ` ( M ... N ) `</TD>
79837994
</TR>
79847995

7996+
<tr>
7997+
<td>~ seq3clss</td>
7998+
<td>when ` S ` is a subset of a class ` T ` which satisfies
7999+
closure properties</td>
8000+
</tr>
8001+
8002+
<tr>
8003+
<td>~ seqclg</td>
8004+
<td>when ` F ` and ` .+ ` are sets</td>
8005+
</tr>
8006+
79858007
<TR>
79868008
<TD>seqfveq2</TD>
79878009
<TD>~ seq3fveq2</TD>
@@ -8099,10 +8121,17 @@
80998121
</TR>
81008122

81018123
<TR>
8102-
<TD>seqhomo</TD>
8124+
<TD rowspan="2">seqhomo</TD>
81038125
<TD>~ seq3homo</TD>
8126+
<td>where several hypotheses hold on ` ( ZZ>= `` M ) `
8127+
not just ` ( M ... N ) `</td>
81048128
</TR>
81058129

8130+
<tr>
8131+
<td>~ seqhomog</td>
8132+
<td>where ` F ` , ` .+ ` and ` Q ` are sets</td>
8133+
</tr>
8134+
81068135
<TR>
81078136
<TD>seqz</TD>
81088137
<TD>~ seq3z</TD>
@@ -10914,11 +10943,12 @@
1091410943
</tr>
1091510944

1091610945
<tr>
10917-
<td>gsumwsubmcl , gsumws1 , gsumwcl , gsumsgrpccat ,
10918-
gsumccat , gsumws2 , gsumccatsn , gsumspl , gsumwmhm ,
10946+
<td>gsumws1 , gsumsgrpccat ,
10947+
gsumccat , gsumws2 , gsumccatsn , gsumspl ,
1091910948
gsumwspan</td>
1092010949
<td><i>none</i></td>
10921-
<td>should be feasible once Word is defined</td>
10950+
<td>should be feasible once more ` Word ` related
10951+
theorems are available</td>
1092210952
</tr>
1092310953

1092410954
<tr>

0 commit comments

Comments
 (0)