@@ -225405,6 +225405,25 @@ that F(A') is isomorphic to B'.". Therefore, the category of sets and
225405
225405
CLMZDFCLZRSMDDCLTUANABCDEFGHOPQ $.
225406
225406
$}
225407
225407
225408
+ ${
225409
+ $d x y z D $. $d x y z K $.
225410
+ oduprs.d $e |- D = ( ODual ` K ) $.
225411
+ $( Being a proset is a self-dual property. (Contributed by Thierry Arnoux,
225412
+ 13-Sep-2018.) $)
225413
+ oduprs $p |- ( K e. Proset -> D e. Proset ) $=
225414
+ ( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s
225415
+ wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci
225416
+ ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ
225417
+ UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN
225418
+ UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC
225419
+ KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC
225420
+ UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB
225421
+ LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV
225422
+ NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP
225423
+ ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH
225424
+ $.
225425
+ $}
225426
+
225408
225427
${
225409
225428
$d K f b r x y z $. $d B f b r x y z $. $d .<_ f b r x y z $.
225410
225429
$d X x y z $. $d Y x y z $.
@@ -509531,25 +509550,6 @@ Splicing words (substring replacement)
509531
509550
RTVLWKVPVRVTXRTVEVLWKVPVOVTXRTVFVEQQQVGVHEFGWFVMVPWFNVPNUOVI $.
509532
509551
$}
509533
509552
509534
- ${
509535
- $d x y z D $. $d x y z K $.
509536
- oduprs.d $e |- D = ( ODual ` K ) $.
509537
- $( Being a proset is a self-dual property. (Contributed by Thierry Arnoux,
509538
- 13-Sep-2018.) $)
509539
- oduprs $p |- ( K e. Proset -> D e. Proset ) $=
509540
- ( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s
509541
- wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci
509542
- ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ
509543
- UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN
509544
- UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC
509545
- KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC
509546
- UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB
509547
- LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV
509548
- NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP
509549
- ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH
509550
- $.
509551
- $}
509552
-
509553
509553
${
509554
509554
posrasymb.b $e |- B = ( Base ` K ) $.
509555
509555
posrasymb.l $e |- .<_ = ( ( le ` K ) i^i ( B X. B ) ) $.
@@ -838272,6 +838272,38 @@ preorders induced by the categories are considered ( ~ catprs2 ).
838272
838272
LUUGUUJUWHYLYMYOYPYQFGUUJUWHXCYRXKXMXLYSYT $.
838273
838273
$}
838274
838274
838275
+ ${
838276
+ $d C f x y $. $d F f x y $. $d H f x y $. $d J f x y $. $d R f x y $.
838277
+ $d S f $. $d U f $. $d V f $. $d X f x y $. $d Y f x y $.
838278
+ $d f ph x y $.
838279
+ thinccisod.c $e |- C = ( CatCat ` U ) $.
838280
+ thinccisod.r $e |- R = ( Base ` X ) $.
838281
+ thinccisod.s $e |- S = ( Base ` Y ) $.
838282
+ thinccisod.h $e |- H = ( Hom ` X ) $.
838283
+ thinccisod.j $e |- J = ( Hom ` Y ) $.
838284
+ thinccisod.u $e |- ( ph -> U e. V ) $.
838285
+ thinccisod.x $e |- ( ph -> X e. U ) $.
838286
+ thinccisod.y $e |- ( ph -> Y e. U ) $.
838287
+ thinccisod.xt $e |- ( ph -> X e. ThinCat ) $.
838288
+ thinccisod.yt $e |- ( ph -> Y e. ThinCat ) $.
838289
+ thinccisod.f $e |- ( ph -> F : R -1-1-onto-> S ) $.
838290
+ thinccisod.1 $e |- ( ( ph /\ ( x e. R /\ y e. R ) ) ->
838291
+ ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) $.
838292
+ $( Two thin categories are isomorphic if the induced preorders are
838293
+ order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33.
838294
+ (Contributed by Zhi Wang, 22-Sep-2025.) $)
838295
+ thinccisod $p |- ( ph -> X ( ~=c ` C ) Y ) $=
838296
+ ( vf ccic cfv wbr cv co c0 wceq wb wral wf1o wa wex cvv wf f1of syl fvexd
838297
+ cbs eqeltrid fexd ralrimivva fveq1 oveq12d eqeq1d bibi2d 2ralbidv anbi12d
838298
+ jca f1oeq1 spcedv eqid ccat cin thinccd catcbas eleqtrrd thincciso mpbird
838299
+ elind ) ALMDUGUHUIBUJZCUJZIUKULUMZWFUFUJZUHZWGWIUHZJUKZULUMZUNZCEUOBEUOZE
838300
+ FWIUPZUQZUFURAWQWHWFHUHZWGHUHZJUKZULUMZUNZCEUOBEUOZEFHUPZUQUFUSHAEFUSHAXD
838301
+ EFHUTUDEFHVAVBAELVDUHUSOALVDVCVEVFAXCXDAXBBCEEUEVGUDVNWIHUMZWOXCWPXDXEWNX
838302
+ BBCEEXEWMXAWHXEWLWTULXEWJWRWKWSJWFWIHVHWGWIHVHVIVJVKVLEFWIHVOVMVPABCDVDUH
838303
+ ZDEFGUFIJKLMNXFVQZOPQRSALGVRVSZXFAGVRLTALUBVTWEAXFDGKNXGSWAZWBAMXHXFAGVRM
838304
+ UAAMUCVTWEXIWBUBUCWCWD $.
838305
+ $}
838306
+
838275
838307
${
838276
838308
$d C f x y $.
838277
838309
$( Any structure with an empty set of objects is a thin category.
@@ -838659,8 +838691,64 @@ mean the category of preordered sets (classes). However, "ProsetToCat"
838659
838691
GUKZPQOAULRZPSTAUMRZUNUOVJPQUPUQCVJURUSVLAVJSTZVIVLVKCUTVSVKCVBCVJVCVDA
838660
838692
VIVSAGHFDQPVPVQVRVEVFVGVH $.
838661
838693
$}
838694
+
838695
+ oduoppcbas.d $e |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) $.
838696
+ oduoppcbas.o $e |- O = ( oppCat ` C ) $.
838697
+ $( The dual of a preordered set and the opposite category have the same set
838698
+ of objects. (Contributed by Zhi Wang, 22-Sep-2025.) $)
838699
+ oduoppcbas $p |- ( ph -> ( Base ` D ) = ( Base ` O ) ) $=
838700
+ ( cbs cfv codu cproset wcel eqid oduprs syl wceq odubas prstcbas oppcbas
838701
+ a1i eqcomd eqtrdi ) ACJKZBJKZEJKAUEBDFGADJKZUEAUGCDLKZHADMNUHMNGUHDUHOZPQ
838702
+ UGUHJKRAUGUHDUIUGOSUBTUCTUFBEIUFOUAUD $.
838703
+
838704
+ ${
838705
+ $d C x y $. $d D x y $. $d K x y $. $d O x y $. $d U x y $.
838706
+ $d V x y $. $d ph x y $.
838707
+ oduoppcciso.u $e |- ( ph -> U e. V ) $.
838708
+ oduoppcciso.d $e |- ( ph -> D e. U ) $.
838709
+ oduoppcciso.o $e |- ( ph -> O e. U ) $.
838710
+ $( The dual of a preordered set and the opposite category are
838711
+ category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed
838712
+ by Zhi Wang, 22-Sep-2025.) $)
838713
+ oduoppcciso $p |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) $=
838714
+ ( cfv eqid wcel co c0 wceq vx vy ccatc cbs cid cres chom cproset oduprs
838715
+ codu prstcthin cthinc oppcthin wf1o f1oi oduoppcbas f1oeq3d mpbii cv wa
838716
+ syl cple wbr wne wb oduleg adantl cprstc adantr eqidd prstcleval simprl
838717
+ simprr prstchom oppcbas eqtr4di eleqtrd 3bitr3d fvresi ad2antrl oveq12d
838718
+ necon4bid ad2antll oppchom eqtrdi eqeq1d bitr4d thinccisod ) AUAUBDUCOZ
838719
+ CUDOZFUDOZDUEWJUFZCUGOZFUGOZGCFWIPWJPWKPWMPWNPLMNACEUJOZJAEUHQZWOUHQZIW
838720
+ OEWOPZUIZVAUKABULQFULQABEHIUKBFKUMVAAWJWJWLUNWJWKWLUNWJUOAWJWKWJWLABCEF
838721
+ HIJKUPZUQURAUAUSZWJQZUBUSZWJQZUTZUTZXAXCWMRZSTXCXABUGOZRZSTXAWLOZXCWLOZ
838722
+ WNRZSTXFXGSXISXFXAXCWOVBOZVCZXCXAEVBOZVCZXGSVDXISVDXEXNXPVEAXAXCWOXMXOE
838723
+ WJWJWRXOPXMPVFVGXFCWMWOXMXAXCACWOVHOTXEJVIZXFWPWQAWPXEIVIZWSVAZXFCWOXMX
838724
+ QXSXFXMVJVKXFWMVJAXBXDVLZAXBXDVMZVNXFBXHEXOXCXAABEVHOTXEHVIZXRXFBEXOYBX
838725
+ RXFXOVJVKXFXHVJXFXCWJBUDOZYAAWJYCTXEAWJWKYCWTYCBFKYCPVOVPVIZVQXFXAWJYCX
838726
+ TYDVQVNVRWBXFXLXISXFXLXAXCWNRXIXFXJXAXKXCWNXBXJXATAXDWJXAVSVTXDXKXCTAXB
838727
+ WJXCVSWCWABXHFXAXCXHPKWDWEWFWGWH $.
838728
+ $}
838729
+
838730
+ $(
838731
+ The following cannot be proved without using discouraged theorems such as
838732
+ ~ prstchomval .
838733
+ @( The dual of a preordered set and the opposite category have the same set
838734
+ of objects, morphisms, and compositions. Example 3.6(1) of [Adamek]
838735
+ p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
838736
+ oduoppc @p |- ( ph -> ( ( Homf ` D ) = ( Homf ` O )
838737
+ /\ ( comf ` D ) = ( comf ` O ) ) ) @=
838738
+ ( ) ? @.
838739
+ $)
838662
838740
$}
838663
838741
838742
+ $(
838743
+ The following cannot be proved without using discouraged theorems such as
838744
+ ~ prstchomval .
838745
+ @( The correspondence between order dual and opposite category. Example
838746
+ 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
838747
+ oduoppccom @p |- ( ProsetToCat o. ( ODual |` Proset ) )
838748
+ = ( ODual o. ( oppCat o. ProsetToCat ) ) @=
838749
+ ( ) ? @.
838750
+ $)
838751
+
838664
838752
${
838665
838753
$d B x y $. $d C x y $. $d ph x y $.
838666
838754
postc.c $e |- ( ph -> C = ( ProsetToCat ` K ) ) $.
@@ -838849,16 +838937,77 @@ structure becomes the object here (see ~ mndtcbasval ), instead of just
838849
838937
( vy ccat wcel ccid cfv cbs c0g cmpt wceq mndtccatid simpld ) ABGHBIJFBKJ
838850
838938
CLJMNAFBCDEOP $.
838851
838939
838852
- mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $.
838853
- mndtcid.x $e |- ( ph -> X e. B ) $.
838854
- mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $.
838855
- $( The identity morphism, or identity arrow, of the category built from a
838856
- monoid is the identity element of the monoid. (Contributed by Zhi Wang,
838857
- 22-Sep-2024.) $)
838858
- mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $=
838859
- ( vx c0g cfv cbs cvv ccid cmpt ccat wceq mndtccatid simprd eqtrd cv eqidd
838860
- wcel wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUFUMUNTALC
838861
- EGHUAUBUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $.
838940
+ ${
838941
+ mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $.
838942
+ mndtcid.x $e |- ( ph -> X e. B ) $.
838943
+ mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $.
838944
+ $( The identity morphism, or identity arrow, of the category built from a
838945
+ monoid is the identity element of the monoid. (Contributed by Zhi
838946
+ Wang, 22-Sep-2024.) $)
838947
+ mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $=
838948
+ ( vx c0g cfv cbs cvv ccid cmpt ccat wceq wcel mndtccatid eqtrd cv eqidd
838949
+ simprd wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUAUMUN
838950
+ TALCEGHUBUFUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $.
838951
+ $}
838952
+
838953
+ ${
838954
+ oppgoppchom.d $e |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) $.
838955
+ oppgoppchom.o $e |- O = ( oppCat ` C ) $.
838956
+ oppgoppchom.x $e |- ( ph -> X e. ( Base ` D ) ) $.
838957
+ oppgoppchom.y $e |- ( ph -> Y e. ( Base ` O ) ) $.
838958
+ ${
838959
+ oppgoppchom.h $e |- ( ph -> H = ( Hom ` D ) ) $.
838960
+ oppgoppchom.j $e |- ( ph -> J = ( Hom ` O ) ) $.
838961
+ $( The converted opposite monoid has the same hom-set as that of the
838962
+ opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed
838963
+ by Zhi Wang, 21-Sep-2025.) $)
838964
+ oppgoppchom $p |- ( ph -> ( X H X ) = ( Y J Y ) ) $=
838965
+ ( co cfv cbs chom coppg wceq eqid oppgbas a1i oppcbas eqcomi mndtchom
838966
+ eqidd cmnd wcel oppgmnd syl 3eqtr4rd oppchom eqtr4di oveqd eqtr4d ) A
838967
+ HHDRZIIGUASZRZIIERAUTIIBUASZRZVBAFTSZFUBSZTSZVDUTVEVGUCAVEFVFVFUDZVEU
838968
+ DUEUFAGTSZBVCFIIJKVIBTSZUCAVJVIVJBGMVJUDUGUHUFOOAVCUJUIACTSZCDVFHHLAF
838969
+ UKULVFUKULKFVFVHUMUNAVKUJNNPUIUOBVCGIIVCUDMUPUQAEVAIIQURUS $.
838970
+ $}
838971
+
838972
+ ${
838973
+ oppgoppcco.o $e |- ( ph -> .x. = ( comp ` D ) ) $.
838974
+ oppgoppcco.x $e |- ( ph -> .xb = ( comp ` O ) ) $.
838975
+ $( The converted opposite monoid has the same composition as that of
838976
+ the opposite category. Example 3.6(2) of [Adamek] p. 25.
838977
+ (Contributed by Zhi Wang, 22-Sep-2025.) $)
838978
+ oppgoppcco $p |- ( ph -> ( <. X , X >. .x. X ) =
838979
+ ( <. Y , Y >. .xb Y ) ) $=
838980
+ ( co cfv eqid cop cco ctpos cplusg cbs wceq oppcbas a1i eqidd mndtcco
838981
+ eqcomi tposeqd oppccofval coppg cmnd wcel oppgmnd oppgplusfval eqtrdi
838982
+ syl 3eqtr4rd oveqd eqtr4d ) AHHUAHERZIIUAZIGUBSZRZVEIDRAVEIBUBSZRZUCF
838983
+ UDSZUCZVGVDAVIVJAGUESZBVHFIIIJKVLBUESZUFAVMVLVMBGMVMTUGUKZUHOOOAVHUIU
838984
+ JULAVLBVHGIIIVNVHTMOOOUMAVDFUNSZUDSZVKACUESZCEVOHHHLAFUOUPVOUOUPKFVOV
838985
+ OTZUQUTAVQUINNNPUJVJVPFVOVJTVRVPTURUSVAADVFVEIQVBVC $.
838986
+ $}
838987
+
838988
+ $( The converted opposite monoid has the same identity morphism as that
838989
+ of the opposite category. Example 3.6(2) of [Adamek] p. 25.
838990
+ (Contributed by Zhi Wang, 22-Sep-2025.) $)
838991
+ oppgoppcid $p |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) $=
838992
+ ( c0g cfv ccid wceq eqid cbs wcel coppg oppgid a1i eqcomi ccat mndtccat
838993
+ oppcbas oppcid syl mndtcid cmnd oppgmnd eqidd 3eqtr4rd ) ADNOZDUAOZNOZG
838994
+ EPOZOFCPOZOUOUQQADUPUOUPRZUORUBUCAESOZBURDGHIVABSOZQAVBVAVBBEKVBRUGUDUC
838995
+ MABUETURBPOZQABDHIUFVCBEKVCRUHUIUJACSOZCUSUPFJADUKTUPUKTIDUPUTULUIAVDUM
838996
+ LAUSUMUJUN $.
838997
+ $}
838998
+
838999
+ $(
839000
+ The following is not true yet because base set of converted category
839001
+ depends on the original monoid in the current definition.
839002
+ @{
839003
+ oppgtoppc.o @e |- O = ( oppG ` M ) @.
839004
+ oppgtoppc.d @e |- ( ph -> D = ( MndToCat ` O ) ) @.
839005
+ @( An opposite monoid is converted to an opposite category. Example
839006
+ 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
839007
+ oppgtoppc @p |- ( ph -> D = ( oppCat ` C ) ) @=
839008
+ ( ) ? @.
839009
+ @}
839010
+ $)
838862
839011
$}
838863
839012
838864
839013
${
0 commit comments