Skip to content

Commit 5705a5f

Browse files
authored
Correspondence between ODual(order dual)/oppG(opposite monoid) and oppCat (opposite category) (#5022)
* [add] assa2ass2; [shorten] assa2ass * [add] asclcom * [add] elmgpcntrd * [prove] asclcntr; [add] asclelbas * [minimize] asclcom * [delete] assascacom and assascacrng * [improve] explanation of asclcom * [rename] structure map of associative algebra might be non-injective; [fix] algebraic scalars map -> algebra scalars map * [add] upcic (empty proof), upciclem1 * [change] upciclem1: var change * [add] isisod; [prove] upcic; [propose] upciclem2; [move] reueqdv to main * [add] funcrcl2, funcrcl3; [update] upcic, upciclem2 * [shorten] upcic with funcrcl2 * [fix] functor * [add] funcel1; [propose] funcel2 * Revert "[add] funcel1; [propose] funcel2" This reverts commit 5fb5705. * [prove] upciclem2 * [remove] upciclem2.n; [reformat] hypotheses; [trivial] formatting * [trivial] formatting * [add] a section for Universal property * [add] upeu * [fix] upeu description * [add] upeu2lem, reuxfr1dd, upciclem2; [shorten] upciclem3; [propose] upeu2 * [prove] upeu2 * [move] reuxfr1dd; [fix] upciclem1 description * [move and fix] upeu2lem and description and line length * [propose] oppgtoppc * [fix] oppgtoppc; [formatting] * [add] oppgoppchom * [add] oppgoppcco * [add] oppgoppcid * [add] oppgoppc comments; [fix] format * [add] thinccisod, oduoppcbas; [propose] oduoppcciso, oduoppc, oduoppccom * [move] oduprs from AV's mathbox to main * [prove] oduoppcciso * [fix] oduprs from TA's mathbox
1 parent 4977ad5 commit 5705a5f

File tree

2 files changed

+179
-29
lines changed

2 files changed

+179
-29
lines changed

changes-set.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,7 @@ Date Old New Notes
9696
23-Sep-25 coecj [same] Removed unneeded hypothesis
9797
23-Sep-25 plycj [same] Removed unneeded hypothesis
9898
23-Sep-25 elfzolem1 [same] moved from GS's mathbox to main set.mm
99+
22-Sep-25 oduprs [same] Moved from TA's mathbox to main set.mm
99100
17-Sep-25 psdmul [same] Removed unneeded hypothesis
100101
17-Sep-25 psdvsca [same] Removed unneeded hypothesis
101102
17-Sep-25 psdadd [same] Removed unneeded hypothesis

set.mm

Lines changed: 178 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -225405,6 +225405,25 @@ that F(A') is isomorphic to B'.". Therefore, the category of sets and
225405225405
CLMZDFCLZRSMDDCLTUANABCDEFGHOPQ $.
225406225406
$}
225407225407

225408+
${
225409+
$d x y z D $. $d x y z K $.
225410+
oduprs.d $e |- D = ( ODual ` K ) $.
225411+
$( Being a proset is a self-dual property. (Contributed by Thierry Arnoux,
225412+
13-Sep-2018.) $)
225413+
oduprs $p |- ( K e. Proset -> D e. Proset ) $=
225414+
( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s
225415+
wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci
225416+
ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ
225417+
UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN
225418+
UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC
225419+
KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC
225420+
UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB
225421+
LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV
225422+
NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP
225423+
ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH
225424+
$.
225425+
$}
225426+
225408225427
${
225409225428
$d K f b r x y z $. $d B f b r x y z $. $d .<_ f b r x y z $.
225410225429
$d X x y z $. $d Y x y z $.
@@ -509531,25 +509550,6 @@ Splicing words (substring replacement)
509531509550
RTVLWKVPVRVTXRTVEVLWKVPVOVTXRTVFVEQQQVGVHEFGWFVMVPWFNVPNUOVI $.
509532509551
$}
509533509552

509534-
${
509535-
$d x y z D $. $d x y z K $.
509536-
oduprs.d $e |- D = ( ODual ` K ) $.
509537-
$( Being a proset is a self-dual property. (Contributed by Thierry Arnoux,
509538-
13-Sep-2018.) $)
509539-
oduprs $p |- ( K e. Proset -> D e. Proset ) $=
509540-
( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s
509541-
wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci
509542-
ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ
509543-
UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN
509544-
UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC
509545-
KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC
509546-
UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB
509547-
LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV
509548-
NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP
509549-
ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH
509550-
$.
509551-
$}
509552-
509553509553
${
509554509554
posrasymb.b $e |- B = ( Base ` K ) $.
509555509555
posrasymb.l $e |- .<_ = ( ( le ` K ) i^i ( B X. B ) ) $.
@@ -838272,6 +838272,38 @@ preorders induced by the categories are considered ( ~ catprs2 ).
838272838272
LUUGUUJUWHYLYMYOYPYQFGUUJUWHXCYRXKXMXLYSYT $.
838273838273
$}
838274838274

838275+
${
838276+
$d C f x y $. $d F f x y $. $d H f x y $. $d J f x y $. $d R f x y $.
838277+
$d S f $. $d U f $. $d V f $. $d X f x y $. $d Y f x y $.
838278+
$d f ph x y $.
838279+
thinccisod.c $e |- C = ( CatCat ` U ) $.
838280+
thinccisod.r $e |- R = ( Base ` X ) $.
838281+
thinccisod.s $e |- S = ( Base ` Y ) $.
838282+
thinccisod.h $e |- H = ( Hom ` X ) $.
838283+
thinccisod.j $e |- J = ( Hom ` Y ) $.
838284+
thinccisod.u $e |- ( ph -> U e. V ) $.
838285+
thinccisod.x $e |- ( ph -> X e. U ) $.
838286+
thinccisod.y $e |- ( ph -> Y e. U ) $.
838287+
thinccisod.xt $e |- ( ph -> X e. ThinCat ) $.
838288+
thinccisod.yt $e |- ( ph -> Y e. ThinCat ) $.
838289+
thinccisod.f $e |- ( ph -> F : R -1-1-onto-> S ) $.
838290+
thinccisod.1 $e |- ( ( ph /\ ( x e. R /\ y e. R ) ) ->
838291+
( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) $.
838292+
$( Two thin categories are isomorphic if the induced preorders are
838293+
order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33.
838294+
(Contributed by Zhi Wang, 22-Sep-2025.) $)
838295+
thinccisod $p |- ( ph -> X ( ~=c ` C ) Y ) $=
838296+
( vf ccic cfv wbr cv co c0 wceq wb wral wf1o wa wex cvv wf f1of syl fvexd
838297+
cbs eqeltrid fexd ralrimivva fveq1 oveq12d eqeq1d bibi2d 2ralbidv anbi12d
838298+
jca f1oeq1 spcedv eqid ccat cin thinccd catcbas eleqtrrd thincciso mpbird
838299+
elind ) ALMDUGUHUIBUJZCUJZIUKULUMZWFUFUJZUHZWGWIUHZJUKZULUMZUNZCEUOBEUOZE
838300+
FWIUPZUQZUFURAWQWHWFHUHZWGHUHZJUKZULUMZUNZCEUOBEUOZEFHUPZUQUFUSHAEFUSHAXD
838301+
EFHUTUDEFHVAVBAELVDUHUSOALVDVCVEVFAXCXDAXBBCEEUEVGUDVNWIHUMZWOXCWPXDXEWNX
838302+
BBCEEXEWMXAWHXEWLWTULXEWJWRWKWSJWFWIHVHWGWIHVHVIVJVKVLEFWIHVOVMVPABCDVDUH
838303+
ZDEFGUFIJKLMNXFVQZOPQRSALGVRVSZXFAGVRLTALUBVTWEAXFDGKNXGSWAZWBAMXHXFAGVRM
838304+
UAAMUCVTWEXIWBUBUCWCWD $.
838305+
$}
838306+
838275838307
${
838276838308
$d C f x y $.
838277838309
$( Any structure with an empty set of objects is a thin category.
@@ -838659,8 +838691,64 @@ mean the category of preordered sets (classes). However, "ProsetToCat"
838659838691
GUKZPQOAULRZPSTAUMRZUNUOVJPQUPUQCVJURUSVLAVJSTZVIVLVKCUTVSVKCVBCVJVCVDA
838660838692
VIVSAGHFDQPVPVQVRVEVFVGVH $.
838661838693
$}
838694+
838695+
oduoppcbas.d $e |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) $.
838696+
oduoppcbas.o $e |- O = ( oppCat ` C ) $.
838697+
$( The dual of a preordered set and the opposite category have the same set
838698+
of objects. (Contributed by Zhi Wang, 22-Sep-2025.) $)
838699+
oduoppcbas $p |- ( ph -> ( Base ` D ) = ( Base ` O ) ) $=
838700+
( cbs cfv codu cproset wcel eqid oduprs syl wceq odubas prstcbas oppcbas
838701+
a1i eqcomd eqtrdi ) ACJKZBJKZEJKAUEBDFGADJKZUEAUGCDLKZHADMNUHMNGUHDUHOZPQ
838702+
UGUHJKRAUGUHDUIUGOSUBTUCTUFBEIUFOUAUD $.
838703+
838704+
${
838705+
$d C x y $. $d D x y $. $d K x y $. $d O x y $. $d U x y $.
838706+
$d V x y $. $d ph x y $.
838707+
oduoppcciso.u $e |- ( ph -> U e. V ) $.
838708+
oduoppcciso.d $e |- ( ph -> D e. U ) $.
838709+
oduoppcciso.o $e |- ( ph -> O e. U ) $.
838710+
$( The dual of a preordered set and the opposite category are
838711+
category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed
838712+
by Zhi Wang, 22-Sep-2025.) $)
838713+
oduoppcciso $p |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) $=
838714+
( cfv eqid wcel co c0 wceq vx vy ccatc cbs cid cres chom cproset oduprs
838715+
codu prstcthin cthinc oppcthin wf1o f1oi oduoppcbas f1oeq3d mpbii cv wa
838716+
syl cple wbr wne wb oduleg adantl cprstc adantr eqidd prstcleval simprl
838717+
simprr prstchom oppcbas eqtr4di eleqtrd 3bitr3d fvresi ad2antrl oveq12d
838718+
necon4bid ad2antll oppchom eqtrdi eqeq1d bitr4d thinccisod ) AUAUBDUCOZ
838719+
CUDOZFUDOZDUEWJUFZCUGOZFUGOZGCFWIPWJPWKPWMPWNPLMNACEUJOZJAEUHQZWOUHQZIW
838720+
OEWOPZUIZVAUKABULQFULQABEHIUKBFKUMVAAWJWJWLUNWJWKWLUNWJUOAWJWKWJWLABCEF
838721+
HIJKUPZUQURAUAUSZWJQZUBUSZWJQZUTZUTZXAXCWMRZSTXCXABUGOZRZSTXAWLOZXCWLOZ
838722+
WNRZSTXFXGSXISXFXAXCWOVBOZVCZXCXAEVBOZVCZXGSVDXISVDXEXNXPVEAXAXCWOXMXOE
838723+
WJWJWRXOPXMPVFVGXFCWMWOXMXAXCACWOVHOTXEJVIZXFWPWQAWPXEIVIZWSVAZXFCWOXMX
838724+
QXSXFXMVJVKXFWMVJAXBXDVLZAXBXDVMZVNXFBXHEXOXCXAABEVHOTXEHVIZXRXFBEXOYBX
838725+
RXFXOVJVKXFXHVJXFXCWJBUDOZYAAWJYCTXEAWJWKYCWTYCBFKYCPVOVPVIZVQXFXAWJYCX
838726+
TYDVQVNVRWBXFXLXISXFXLXAXCWNRXIXFXJXAXKXCWNXBXJXATAXDWJXAVSVTXDXKXCTAXB
838727+
WJXCVSWCWABXHFXAXCXHPKWDWEWFWGWH $.
838728+
$}
838729+
838730+
$(
838731+
The following cannot be proved without using discouraged theorems such as
838732+
~ prstchomval .
838733+
@( The dual of a preordered set and the opposite category have the same set
838734+
of objects, morphisms, and compositions. Example 3.6(1) of [Adamek]
838735+
p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
838736+
oduoppc @p |- ( ph -> ( ( Homf ` D ) = ( Homf ` O )
838737+
/\ ( comf ` D ) = ( comf ` O ) ) ) @=
838738+
( ) ? @.
838739+
$)
838662838740
$}
838663838741

838742+
$(
838743+
The following cannot be proved without using discouraged theorems such as
838744+
~ prstchomval .
838745+
@( The correspondence between order dual and opposite category. Example
838746+
3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
838747+
oduoppccom @p |- ( ProsetToCat o. ( ODual |` Proset ) )
838748+
= ( ODual o. ( oppCat o. ProsetToCat ) ) @=
838749+
( ) ? @.
838750+
$)
838751+
838664838752
${
838665838753
$d B x y $. $d C x y $. $d ph x y $.
838666838754
postc.c $e |- ( ph -> C = ( ProsetToCat ` K ) ) $.
@@ -838849,16 +838937,77 @@ structure becomes the object here (see ~ mndtcbasval ), instead of just
838849838937
( vy ccat wcel ccid cfv cbs c0g cmpt wceq mndtccatid simpld ) ABGHBIJFBKJ
838850838938
CLJMNAFBCDEOP $.
838851838939

838852-
mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $.
838853-
mndtcid.x $e |- ( ph -> X e. B ) $.
838854-
mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $.
838855-
$( The identity morphism, or identity arrow, of the category built from a
838856-
monoid is the identity element of the monoid. (Contributed by Zhi Wang,
838857-
22-Sep-2024.) $)
838858-
mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $=
838859-
( vx c0g cfv cbs cvv ccid cmpt ccat wceq mndtccatid simprd eqtrd cv eqidd
838860-
wcel wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUFUMUNTALC
838861-
EGHUAUBUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $.
838940+
${
838941+
mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $.
838942+
mndtcid.x $e |- ( ph -> X e. B ) $.
838943+
mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $.
838944+
$( The identity morphism, or identity arrow, of the category built from a
838945+
monoid is the identity element of the monoid. (Contributed by Zhi
838946+
Wang, 22-Sep-2024.) $)
838947+
mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $=
838948+
( vx c0g cfv cbs cvv ccid cmpt ccat wceq wcel mndtccatid eqtrd cv eqidd
838949+
simprd wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUAUMUN
838950+
TALCEGHUBUFUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $.
838951+
$}
838952+
838953+
${
838954+
oppgoppchom.d $e |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) $.
838955+
oppgoppchom.o $e |- O = ( oppCat ` C ) $.
838956+
oppgoppchom.x $e |- ( ph -> X e. ( Base ` D ) ) $.
838957+
oppgoppchom.y $e |- ( ph -> Y e. ( Base ` O ) ) $.
838958+
${
838959+
oppgoppchom.h $e |- ( ph -> H = ( Hom ` D ) ) $.
838960+
oppgoppchom.j $e |- ( ph -> J = ( Hom ` O ) ) $.
838961+
$( The converted opposite monoid has the same hom-set as that of the
838962+
opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed
838963+
by Zhi Wang, 21-Sep-2025.) $)
838964+
oppgoppchom $p |- ( ph -> ( X H X ) = ( Y J Y ) ) $=
838965+
( co cfv cbs chom coppg wceq eqid oppgbas a1i oppcbas eqcomi mndtchom
838966+
eqidd cmnd wcel oppgmnd syl 3eqtr4rd oppchom eqtr4di oveqd eqtr4d ) A
838967+
HHDRZIIGUASZRZIIERAUTIIBUASZRZVBAFTSZFUBSZTSZVDUTVEVGUCAVEFVFVFUDZVEU
838968+
DUEUFAGTSZBVCFIIJKVIBTSZUCAVJVIVJBGMVJUDUGUHUFOOAVCUJUIACTSZCDVFHHLAF
838969+
UKULVFUKULKFVFVHUMUNAVKUJNNPUIUOBVCGIIVCUDMUPUQAEVAIIQURUS $.
838970+
$}
838971+
838972+
${
838973+
oppgoppcco.o $e |- ( ph -> .x. = ( comp ` D ) ) $.
838974+
oppgoppcco.x $e |- ( ph -> .xb = ( comp ` O ) ) $.
838975+
$( The converted opposite monoid has the same composition as that of
838976+
the opposite category. Example 3.6(2) of [Adamek] p. 25.
838977+
(Contributed by Zhi Wang, 22-Sep-2025.) $)
838978+
oppgoppcco $p |- ( ph -> ( <. X , X >. .x. X ) =
838979+
( <. Y , Y >. .xb Y ) ) $=
838980+
( co cfv eqid cop cco ctpos cplusg cbs wceq oppcbas a1i eqidd mndtcco
838981+
eqcomi tposeqd oppccofval coppg cmnd wcel oppgmnd oppgplusfval eqtrdi
838982+
syl 3eqtr4rd oveqd eqtr4d ) AHHUAHERZIIUAZIGUBSZRZVEIDRAVEIBUBSZRZUCF
838983+
UDSZUCZVGVDAVIVJAGUESZBVHFIIIJKVLBUESZUFAVMVLVMBGMVMTUGUKZUHOOOAVHUIU
838984+
JULAVLBVHGIIIVNVHTMOOOUMAVDFUNSZUDSZVKACUESZCEVOHHHLAFUOUPVOUOUPKFVOV
838985+
OTZUQUTAVQUINNNPUJVJVPFVOVJTVRVPTURUSVAADVFVEIQVBVC $.
838986+
$}
838987+
838988+
$( The converted opposite monoid has the same identity morphism as that
838989+
of the opposite category. Example 3.6(2) of [Adamek] p. 25.
838990+
(Contributed by Zhi Wang, 22-Sep-2025.) $)
838991+
oppgoppcid $p |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) $=
838992+
( c0g cfv ccid wceq eqid cbs wcel coppg oppgid a1i eqcomi ccat mndtccat
838993+
oppcbas oppcid syl mndtcid cmnd oppgmnd eqidd 3eqtr4rd ) ADNOZDUAOZNOZG
838994+
EPOZOFCPOZOUOUQQADUPUOUPRZUORUBUCAESOZBURDGHIVABSOZQAVBVAVBBEKVBRUGUDUC
838995+
MABUETURBPOZQABDHIUFVCBEKVCRUHUIUJACSOZCUSUPFJADUKTUPUKTIDUPUTULUIAVDUM
838996+
LAUSUMUJUN $.
838997+
$}
838998+
838999+
$(
839000+
The following is not true yet because base set of converted category
839001+
depends on the original monoid in the current definition.
839002+
@{
839003+
oppgtoppc.o @e |- O = ( oppG ` M ) @.
839004+
oppgtoppc.d @e |- ( ph -> D = ( MndToCat ` O ) ) @.
839005+
@( An opposite monoid is converted to an opposite category. Example
839006+
3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
839007+
oppgtoppc @p |- ( ph -> D = ( oppCat ` C ) ) @=
839008+
( ) ? @.
839009+
@}
839010+
$)
838862839011
$}
838863839012

838864839013
${

0 commit comments

Comments
 (0)