|
4859 | 4859 | </TR>
|
4860 | 4860 |
|
4861 | 4861 | <tr>
|
4862 |
| - <td>df-cda</td> |
4863 |
| - <td>~ df-dju</td> |
4864 |
| - <td>df-cda and df-dju are essentially the same. Current |
4865 |
| - thinking is that we want to remove df-cda and the +c syntax |
4866 |
| - from set.mm in favor of df-dju and use ` |_| ` in much the same |
4867 |
| - way that cardinal multiplication uses the df-xp ( ` X. ` ) |
4868 |
| - syntax rather than having a notation specific to cardinals.</td> |
4869 |
| -</tr> |
4870 |
| - |
4871 |
| -<tr> |
4872 |
| - <td>cdafn</td> |
4873 |
| - <td>~ djuex</td> |
4874 |
| - <td>Since ` |_| ` is defined on proper classes, the similarity |
4875 |
| - here is somewhat approximate.</td> |
4876 |
| -</tr> |
4877 |
| - |
4878 |
| -<tr> |
4879 |
| - <td>cdaval</td> |
4880 |
| - <td>~ df-dju</td> |
4881 |
| -</tr> |
4882 |
| - |
4883 |
| -<tr> |
4884 |
| - <td>cdadju</td> |
4885 |
| - <td><i>none</i></td> |
4886 |
| - <td>not needed as iset.mm does not have df-cda</td> |
4887 |
| -</tr> |
4888 |
| - |
4889 |
| -<tr> |
4890 |
| - <td>uncdadom , undjudom</td> |
| 4862 | + <td>undjudom</td> |
4891 | 4863 | <td><i>none</i></td>
|
4892 | 4864 | <td>The set.mm proof relies on undom</td>
|
4893 | 4865 | </tr>
|
4894 | 4866 |
|
4895 |
| -<tr> |
4896 |
| - <td>cdaun</td> |
4897 |
| - <td>~ endjudisj</td> |
4898 |
| -</tr> |
4899 |
| - |
4900 |
| -<tr> |
4901 |
| - <td>cdaen</td> |
4902 |
| - <td>~ djuen</td> |
4903 |
| -</tr> |
4904 |
| - |
4905 |
| -<tr> |
4906 |
| - <td>cdaenun</td> |
4907 |
| - <td>~ djuenun</td> |
4908 |
| -</tr> |
4909 |
| - |
4910 |
| -<tr> |
4911 |
| - <td>cda1dif</td> |
4912 |
| - <td><i>none</i></td> |
4913 |
| -</tr> |
4914 |
| - |
4915 | 4867 | <tr>
|
4916 | 4868 | <td>dju1dif</td>
|
4917 | 4869 | <td><i>none</i></td>
|
4918 | 4870 | <td>presumably provable</td>
|
4919 | 4871 | </tr>
|
4920 | 4872 |
|
4921 | 4873 | <tr>
|
4922 |
| - <td>cda0en</td> |
4923 |
| - <td>~ dju0en</td> |
4924 |
| -</tr> |
4925 |
| - |
4926 |
| -<tr> |
4927 |
| - <td>xp2cda</td> |
4928 |
| - <td>~ xp2dju</td> |
4929 |
| -</tr> |
4930 |
| - |
4931 |
| -<tr> |
4932 |
| - <td>cdacomen</td> |
4933 |
| - <td>~ djucomen</td> |
4934 |
| -</tr> |
4935 |
| - |
4936 |
| -<tr> |
4937 |
| - <td>mapcdaen , mapdjuen</td> |
| 4874 | + <td>mapdjuen</td> |
4938 | 4875 | <td><i>none</i></td>
|
4939 | 4876 | <td>the set.mm proof relies on mapunen</td>
|
4940 | 4877 | </tr>
|
4941 | 4878 |
|
4942 | 4879 | <tr>
|
4943 |
| - <td>pwcdaen , pwdjuen</td> |
| 4880 | + <td>pwdjuen</td> |
4944 | 4881 | <td><i>none</i></td>
|
4945 | 4882 | <td>the set.mm proof relies on mapdjuen</td>
|
4946 | 4883 | </tr>
|
4947 | 4884 |
|
4948 | 4885 | <tr>
|
4949 |
| - <td>cdadom1 , djudom1</td> |
| 4886 | + <td>djudom1</td> |
4950 | 4887 | <td><i>none</i></td>
|
4951 | 4888 | <td>the set.mm proof relies on undom</td>
|
4952 | 4889 | </tr>
|
4953 | 4890 |
|
4954 | 4891 | <tr>
|
4955 |
| - <td>cdadom2 , djudom2</td> |
| 4892 | + <td>djudom2</td> |
4956 | 4893 | <td><i>none</i></td>
|
4957 | 4894 | <td>the set.mm proof relies on djudom1</td>
|
4958 | 4895 | </tr>
|
4959 | 4896 |
|
4960 | 4897 | <tr>
|
4961 |
| - <td>cdadom3</td> |
4962 |
| - <td>~ djudoml</td> |
4963 |
| -</tr> |
4964 |
| - |
4965 |
| -<tr> |
4966 |
| - <td>cdaxpdom , djuxpdom</td> |
| 4898 | + <td>djuxpdom</td> |
4967 | 4899 | <td><i>none</i></td>
|
4968 | 4900 | <td>presumably provable if having cardinality greater than one
|
4969 | 4901 | is expressed as ` 2o ~<_ A ` instead</td>
|
4970 | 4902 | </tr>
|
4971 | 4903 |
|
4972 | 4904 | <tr>
|
4973 |
| - <td>cdafi , djufi</td> |
| 4905 | + <td>djufi</td> |
4974 | 4906 | <td><i>none</i></td>
|
4975 | 4907 | <td>we should be able to prove
|
4976 | 4908 | ` ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) e. Fin `</td>
|
4977 | 4909 | </tr>
|
4978 | 4910 |
|
4979 | 4911 | <tr>
|
4980 |
| - <td>cdainflem , cdainf , djuinf</td> |
| 4912 | + <td>cdainflem , djuinf</td> |
4981 | 4913 | <td><i>none</i></td>
|
4982 | 4914 | <td>the set.mm proof is not easily adapted</td>
|
4983 | 4915 | </tr>
|
4984 | 4916 |
|
4985 | 4917 | <tr>
|
4986 |
| - <td>infcda1 , infdju1</td> |
| 4918 | + <td>infdju1</td> |
4987 | 4919 | <td><i>none</i></td>
|
4988 | 4920 | <td>the set.mm proof relies on infdifsn</td>
|
4989 | 4921 | </tr>
|
4990 | 4922 |
|
4991 | 4923 | <tr>
|
4992 |
| - <td>pwcda1 , pwdju1</td> |
| 4924 | + <td>pwdju1</td> |
4993 | 4925 | <td><i>none</i></td>
|
4994 | 4926 | <td>the set.mm proof relies on pwdjuen and pwpw0</td>
|
4995 | 4927 | </tr>
|
4996 | 4928 |
|
4997 | 4929 | <tr>
|
4998 |
| - <td>pwcdaidm , pwdjuidm</td> |
| 4930 | + <td>pwdjuidm</td> |
4999 | 4931 | <td><i>none</i></td>
|
5000 | 4932 | <td>the set.mm proof relies on infdju1 and pwdju1</td>
|
5001 | 4933 | </tr>
|
5002 | 4934 |
|
5003 | 4935 | <tr>
|
5004 |
| - <td>cdalepw , djulepw</td> |
| 4936 | + <td>djulepw</td> |
5005 | 4937 | <td><i>none</i></td>
|
5006 | 4938 | </tr>
|
5007 | 4939 |
|
|
5078 | 5010 | </tr>
|
5079 | 5011 |
|
5080 | 5012 | <tr>
|
5081 |
| - <td>pwcdadom , pwdjudom</td> |
| 5013 | + <td>pwdjudom</td> |
5082 | 5014 | <td><i>none</i></td>
|
5083 | 5015 | </tr>
|
5084 | 5016 |
|
|
9832 | 9764 | <td>df-xps and all theorems mentioning the binary product on a structure
|
9833 | 9765 | (syntax Xs.)</td>
|
9834 | 9766 | <td><i>none</i></td>
|
9835 |
| - <td>The set.mm definition depends on df-cda ( +c ), df-imas ( "s ), |
9836 |
| - and df-prds ( Xs_ )</td> |
| 9767 | + <td>The set.mm definition depends on df-imas ( "s ) |
| 9768 | + and df-prds ( Xs_ ). By its nature the definition of the binary |
| 9769 | + product considers every structure slot (including most notably |
| 9770 | + order which presumably will need to be handled differently |
| 9771 | + in iset.mm).</td> |
9837 | 9772 | </tr>
|
9838 | 9773 |
|
9839 | 9774 | <TR>
|
|
0 commit comments