Skip to content

Commit 5bbd566

Browse files
authored
Remove cda entries in mmil.html (#3609)
These are theorems which used to exist in set.mm but do not any more. There did not turn out to be any need to update mmil.html except to remove these (that is, the corresponding dju theorems are already appropriately listed). They are df-cda , cdafn , cdaval , cdadju , uncdadom , cdaun , cdaen , cdaenun , cda1dif , cda0en , xp2cda , cdacomen , mapcdaen , pwcdaen , cdadom1 , cdadom2 , cdadom3 , cdaxpdom , cdafi , cdainf , infcda1 , pwcda1 , pwcdaidm , cdalepw , and pwcdadom .
1 parent 4988626 commit 5bbd566

File tree

1 file changed

+18
-83
lines changed

1 file changed

+18
-83
lines changed

mmil.raw.html

Lines changed: 18 additions & 83 deletions
Original file line numberDiff line numberDiff line change
@@ -4859,149 +4859,81 @@
48594859
</TR>
48604860

48614861
<tr>
4862-
<td>df-cda</td>
4863-
<td>~ df-dju</td>
4864-
<td>df-cda and df-dju are essentially the same. Current
4865-
thinking is that we want to remove df-cda and the +c syntax
4866-
from set.mm in favor of df-dju and use ` |_| ` in much the same
4867-
way that cardinal multiplication uses the df-xp ( ` X. ` )
4868-
syntax rather than having a notation specific to cardinals.</td>
4869-
</tr>
4870-
4871-
<tr>
4872-
<td>cdafn</td>
4873-
<td>~ djuex</td>
4874-
<td>Since ` |_| ` is defined on proper classes, the similarity
4875-
here is somewhat approximate.</td>
4876-
</tr>
4877-
4878-
<tr>
4879-
<td>cdaval</td>
4880-
<td>~ df-dju</td>
4881-
</tr>
4882-
4883-
<tr>
4884-
<td>cdadju</td>
4885-
<td><i>none</i></td>
4886-
<td>not needed as iset.mm does not have df-cda</td>
4887-
</tr>
4888-
4889-
<tr>
4890-
<td>uncdadom , undjudom</td>
4862+
<td>undjudom</td>
48914863
<td><i>none</i></td>
48924864
<td>The set.mm proof relies on undom</td>
48934865
</tr>
48944866

4895-
<tr>
4896-
<td>cdaun</td>
4897-
<td>~ endjudisj</td>
4898-
</tr>
4899-
4900-
<tr>
4901-
<td>cdaen</td>
4902-
<td>~ djuen</td>
4903-
</tr>
4904-
4905-
<tr>
4906-
<td>cdaenun</td>
4907-
<td>~ djuenun</td>
4908-
</tr>
4909-
4910-
<tr>
4911-
<td>cda1dif</td>
4912-
<td><i>none</i></td>
4913-
</tr>
4914-
49154867
<tr>
49164868
<td>dju1dif</td>
49174869
<td><i>none</i></td>
49184870
<td>presumably provable</td>
49194871
</tr>
49204872

49214873
<tr>
4922-
<td>cda0en</td>
4923-
<td>~ dju0en</td>
4924-
</tr>
4925-
4926-
<tr>
4927-
<td>xp2cda</td>
4928-
<td>~ xp2dju</td>
4929-
</tr>
4930-
4931-
<tr>
4932-
<td>cdacomen</td>
4933-
<td>~ djucomen</td>
4934-
</tr>
4935-
4936-
<tr>
4937-
<td>mapcdaen , mapdjuen</td>
4874+
<td>mapdjuen</td>
49384875
<td><i>none</i></td>
49394876
<td>the set.mm proof relies on mapunen</td>
49404877
</tr>
49414878

49424879
<tr>
4943-
<td>pwcdaen , pwdjuen</td>
4880+
<td>pwdjuen</td>
49444881
<td><i>none</i></td>
49454882
<td>the set.mm proof relies on mapdjuen</td>
49464883
</tr>
49474884

49484885
<tr>
4949-
<td>cdadom1 , djudom1</td>
4886+
<td>djudom1</td>
49504887
<td><i>none</i></td>
49514888
<td>the set.mm proof relies on undom</td>
49524889
</tr>
49534890

49544891
<tr>
4955-
<td>cdadom2 , djudom2</td>
4892+
<td>djudom2</td>
49564893
<td><i>none</i></td>
49574894
<td>the set.mm proof relies on djudom1</td>
49584895
</tr>
49594896

49604897
<tr>
4961-
<td>cdadom3</td>
4962-
<td>~ djudoml</td>
4963-
</tr>
4964-
4965-
<tr>
4966-
<td>cdaxpdom , djuxpdom</td>
4898+
<td>djuxpdom</td>
49674899
<td><i>none</i></td>
49684900
<td>presumably provable if having cardinality greater than one
49694901
is expressed as ` 2o ~<_ A ` instead</td>
49704902
</tr>
49714903

49724904
<tr>
4973-
<td>cdafi , djufi</td>
4905+
<td>djufi</td>
49744906
<td><i>none</i></td>
49754907
<td>we should be able to prove
49764908
` ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) e. Fin `</td>
49774909
</tr>
49784910

49794911
<tr>
4980-
<td>cdainflem , cdainf , djuinf</td>
4912+
<td>cdainflem , djuinf</td>
49814913
<td><i>none</i></td>
49824914
<td>the set.mm proof is not easily adapted</td>
49834915
</tr>
49844916

49854917
<tr>
4986-
<td>infcda1 , infdju1</td>
4918+
<td>infdju1</td>
49874919
<td><i>none</i></td>
49884920
<td>the set.mm proof relies on infdifsn</td>
49894921
</tr>
49904922

49914923
<tr>
4992-
<td>pwcda1 , pwdju1</td>
4924+
<td>pwdju1</td>
49934925
<td><i>none</i></td>
49944926
<td>the set.mm proof relies on pwdjuen and pwpw0</td>
49954927
</tr>
49964928

49974929
<tr>
4998-
<td>pwcdaidm , pwdjuidm</td>
4930+
<td>pwdjuidm</td>
49994931
<td><i>none</i></td>
50004932
<td>the set.mm proof relies on infdju1 and pwdju1</td>
50014933
</tr>
50024934

50034935
<tr>
5004-
<td>cdalepw , djulepw</td>
4936+
<td>djulepw</td>
50054937
<td><i>none</i></td>
50064938
</tr>
50074939

@@ -5078,7 +5010,7 @@
50785010
</tr>
50795011

50805012
<tr>
5081-
<td>pwcdadom , pwdjudom</td>
5013+
<td>pwdjudom</td>
50825014
<td><i>none</i></td>
50835015
</tr>
50845016

@@ -9832,8 +9764,11 @@
98329764
<td>df-xps and all theorems mentioning the binary product on a structure
98339765
(syntax Xs.)</td>
98349766
<td><i>none</i></td>
9835-
<td>The set.mm definition depends on df-cda ( +c ), df-imas ( "s ),
9836-
and df-prds ( Xs_ )</td>
9767+
<td>The set.mm definition depends on df-imas ( "s )
9768+
and df-prds ( Xs_ ). By its nature the definition of the binary
9769+
product considers every structure slot (including most notably
9770+
order which presumably will need to be handled differently
9771+
in iset.mm).</td>
98379772
</tr>
98389773

98399774
<TR>

0 commit comments

Comments
 (0)