File tree Expand file tree Collapse file tree 1 file changed +27
-0
lines changed Expand file tree Collapse file tree 1 file changed +27
-0
lines changed Original file line number Diff line number Diff line change @@ -835491,6 +835491,33 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835491
835491
GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835492
835492
$}
835493
835493
835494
+ ${
835495
+ funcel1.b $e |- B = ( Base ` D ) $.
835496
+ funcel1.f $e |- ( ph -> F ( D Func E ) G ) $.
835497
+ funcel1.x $e |- ( ph -> X e. B ) $.
835498
+
835499
+ ${
835500
+ funcel1.c $e |- C = ( Base ` E ) $.
835501
+ $( The object part of a functor maps into the base set.
835502
+ (Contributed by Zhi Wang,
835503
+ 17-Sep-2025.) $)
835504
+ funcel1 $p |- ( ph -> ( F ` X ) e. C ) $=
835505
+ ( funcf1 ffvelcdmd ) ABCHFABCDEFGILJMKN $.
835506
+ $}
835507
+
835508
+ ${
835509
+ funcel2.h $e |- H = ( Hom ` D ) $.
835510
+ funcel2.j $e |- J = ( Hom ` E ) $.
835511
+ funcel2.y $e |- ( ph -> Y e. B ) $.
835512
+ funcel2.m $e |- ( ph -> M e. ( X H Y ) ) $.
835513
+ $( The morphism part of a functor maps into the hom set.
835514
+ (Contributed by Zhi Wang,
835515
+ 17-Sep-2025.) $)
835516
+ funcel2 $p |- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) $=
835517
+ ( ) ? $.
835518
+ $}
835519
+ $}
835520
+
835494
835521
${
835495
835522
$d B x y z $. $d F x y z $. $d G x y z $. $d H x y z $. $d J x y z $.
835496
835523
$( A utility theorem for proving equivalence of "is a functor".
You can’t perform that action at this time.
0 commit comments