@@ -16508,6 +16508,17 @@ requires either a disjoint variable condition ( ~ sb5 ) or a non-freeness
16508
16508
HZCIZHQBGZQBHZCIZHACDJBCDJRUATUCABQEKSUBCABQELMNACDOBCDOP $.
16509
16509
$}
16510
16510
16511
+ ${
16512
+ $d x ph $.
16513
+ sbimdv.2 $e |- ( ph -> ( ps -> ch ) ) $.
16514
+ $( Deduction substituting both sides of an implication, with ` ph ` and
16515
+ ` x ` disjoint. See also ~ sbimd . (Contributed by Wolf Lammen,
16516
+ 6-May-2023.) $)
16517
+ sbimdv $p |- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) $=
16518
+ ( weq wi wa wex wsb imim2d anim2d eximdv anim12d df-sb 3imtr4g ) ADEGZBHZ
16519
+ RBIZDJZIRCHZRCIZDJZIBDEKCDEKASUBUAUDABCRFLATUCDABCRFMNOBDEPCDEPQ $.
16520
+ $}
16521
+
16511
16522
${
16512
16523
sbbii.1 $e |- ( ph <-> ps ) $.
16513
16524
$( Infer substitution into both sides of a logical equivalence.
@@ -16516,6 +16527,16 @@ requires either a disjoint variable condition ( ~ sb5 ) or a non-freeness
16516
16527
( wsb biimpi sbimi biimpri impbii ) ACDFBCDFABCDABEGHBACDABEIHJ $.
16517
16528
$}
16518
16529
16530
+ ${
16531
+ $d x ph $.
16532
+ sbbidv.1 $e |- ( ph -> ( ps <-> ch ) ) $.
16533
+ $( Deduction substituting both sides of a biconditional, with ` ph ` and
16534
+ ` x ` disjoint. See also ~ sbbid . (Contributed by Wolf Lammen,
16535
+ 6-May-2023.) $)
16536
+ sbbidv $p |- ( ph -> ( [ y / x ] ps <-> [ y / x ] ch ) ) $=
16537
+ ( wsb biimpd sbimdv biimprd impbid ) ABDEGCDEGABCDEABCFHIACBDEABCFJIK $.
16538
+ $}
16539
+
16519
16540
16520
16541
$(
16521
16542
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -25701,46 +25722,73 @@ replaced with setvar variables (see ~ cleljust ), so we don't include
25701
25722
$}
25702
25723
25703
25724
${
25704
- $d ph y $. $d ps y $. $d x y $.
25705
- $( Equivalent wff's correspond to equal class abstractions. (Contributed
25706
- by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof
25707
- shortened by Wolf Lammen, 16-Nov-2019 .) $)
25708
- abbi $p |- ( A. x ( ph < -> ps ) <-> { x | ph } = { x | ps } ) $=
25709
- ( vy cab wceq cv wcel wb wal hbab1 cleqh abid bibi12i albii bitr2i ) ACEZ
25710
- BCEZFCGZQHZSRHZIZCJABIZCJCDQRACDKBCDKLUBUCCTAUABACMBCMNOP $.
25725
+ $d x y A $. $d ph x y $. $d ps y $.
25726
+ abbi2dv.1 $e |- ( ph -> ( x e. A <-> ps ) ) $.
25727
+ $( Deduction from a wff to a class abstraction. (Contributed by NM,
25728
+ 9-Jul-1994.) Avoid ~ ax-11 . (Revised by Wolf Lammen, 6-May-2023 .) $)
25729
+ abbi2dv $p |- ( ph -> A = { x | ps } ) $=
25730
+ ( vy cab cv wcel wsb sbbidv clelsb3v bicomi df-clab 3bitr4g eqrdv ) AFDBC
25731
+ GZACHDIZCFJZBCFJFHZDIZTQIARBCFEKSUAFCDLMBFCNOP $.
25711
25732
$}
25712
25733
25713
25734
${
25714
- $d x A $.
25735
+ $d x A $. $d ph x $.
25736
+ abbi2dvOLD.1 $e |- ( ph -> ( x e. A <-> ps ) ) $.
25737
+ $( Obsolete version of ~ abbi2dv as of 6-May-2023. (Contributed by NM,
25738
+ 9-Jul-1994.) (Proof modification is discouraged.)
25739
+ (New usage is discouraged.) $)
25740
+ abbi2dvOLD $p |- ( ph -> A = { x | ps } ) $=
25741
+ ( cv wcel wb wal cab wceq alrimiv abeq2 sylibr ) ACFDGBHZCIDBCJKAOCELBCDM
25742
+ N $.
25743
+ $}
25744
+
25745
+ ${
25746
+ $d x A $. $d ph x $.
25747
+ abbi1dv.1 $e |- ( ph -> ( ps <-> x e. A ) ) $.
25748
+ $( Deduction from a wff to a class abstraction. (Contributed by NM,
25749
+ 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) $)
25750
+ abbi1dv $p |- ( ph -> { x | ps } = A ) $=
25751
+ ( cab cv wcel bicomd abbi2dv eqcomd ) ADBCFABCDABCGDHEIJK $.
25752
+ $}
25753
+
25754
+ ${
25755
+ $d x y A $. $d y ph $.
25715
25756
abbi2i.1 $e |- ( x e. A <-> ph ) $.
25716
25757
$( Equality of a class variable and a class abstraction (inference form).
25717
- (Contributed by NM, 26-May-1993.) $)
25758
+ (Contributed by NM, 26-May-1993.) Avoid ~ ax-11 . (Revised by Wolf
25759
+ Lammen, 6-May-2023.) $)
25718
25760
abbi2i $p |- A = { x | ph } $=
25761
+ ( cab wceq wtru cv wcel wb a1i abbi2dv mptru ) CABEFGABCBHCIAJGDKLM $.
25762
+ $}
25763
+
25764
+ ${
25765
+ $d x A $.
25766
+ abbi2iOLD.1 $e |- ( x e. A <-> ph ) $.
25767
+ $( Obsolete version of ~ abbi2i as of 6-May-2023. (Contributed by NM,
25768
+ 26-May-1993.) (Proof modification is discouraged.)
25769
+ (New usage is discouraged.) $)
25770
+ abbi2iOLD $p |- A = { x | ph } $=
25719
25771
( cab wceq cv wcel wb abeq2 mpgbir ) CABEFBGCHAIBABCJDK $.
25720
25772
$}
25721
25773
25722
25774
${
25723
25775
$d ph y $. $d ps y $. $d x y $.
25724
- abbii.1 $e |- ( ph <-> ps ) $.
25725
- $( Equivalent wff's yield equal class abstractions (inference form).
25726
- (Contributed by NM, 26-May-1993.) Remove dependency on ~ ax-10 ,
25727
- ~ ax-11 , and ~ ax-12 . (Revised by Steven Nguyen, 3-May-2023.) $)
25728
- abbii $p |- { x | ph } = { x | ps } $=
25729
- ( vy cab wsb cv wcel sbbii df-clab 3bitr4i eqriv ) EACFZBCFZACEGBCEGEHZNI
25730
- POIABCEDJAECKBECKLM $.
25731
-
25732
- $( Theorem abbii is the congruence law for class abstraction. $)
25733
- $( $j congruence 'abbii'; $)
25776
+ $( Equivalent wff's correspond to equal class abstractions. (Contributed
25777
+ by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof
25778
+ shortened by Wolf Lammen, 16-Nov-2019.) $)
25779
+ abbi $p |- ( A. x ( ph <-> ps ) <-> { x | ph } = { x | ps } ) $=
25780
+ ( vy cab wceq cv wcel wb wal hbab1 cleqh abid bibi12i albii bitr2i ) ACEZ
25781
+ BCEZFCGZQHZSRHZIZCJABIZCJCDQRACDKBCDKLUBUCCTAUABACMBCMNOP $.
25734
25782
$}
25735
25783
25736
25784
${
25737
- abbiiOLD.1 $e |- ( ph <-> ps ) $.
25738
- $( Obsolete version of ~ abbii as of 3-May-2023. Equivalent wff's yield
25739
- equal class abstractions (inference form) . (Contributed by NM,
25740
- 26 -May-1993 .) (Proof modification is discouraged. )
25741
- (New usage is discouraged. ) $)
25742
- abbiiOLD $p |- { x | ph } = { x | ps } $=
25743
- ( wb cab wceq abbi mpgbi ) ABEACFBCFGCABCHDI $.
25785
+ $d x y $. $d y ph $. $d y ps $. $d y ch $.
25786
+ abbilem.1 $e |- ( ph -> ( [ y / x ] ps <-> [ y / x ] ch ) ) $.
25787
+ $( Replace substitution expressions with class abstractions. (Contributed
25788
+ by Wolf Lammen, 8 -May-2023 .) $ )
25789
+ abbilem $p |- ( ph -> { x | ps } = { x | ch } ) $=
25790
+ ( cab wsb cv wcel df-clab 3bitr4g eqrdv ) AEBDGZCDGZABDEHCDEHEIZNJPOJFBED
25791
+ KCEDKLM $.
25744
25792
$}
25745
25793
25746
25794
${
@@ -25753,42 +25801,68 @@ equal class abstractions (inference form). (Contributed by NM,
25753
25801
abbidOLD $p |- ( ph -> { x | ps } = { x | ch } ) $=
25754
25802
( wb wal cab wceq alrimi abbi sylib ) ABCGZDHBDICDIJANDEFKBCDLM $.
25755
25803
25756
- $d ps y $. $d ch y $. $d x y $.
25804
+ $d ph y $. $d ps y $. $d ch y $. $d x y $.
25757
25805
$( Equivalent wff's yield equal class abstractions (deduction form).
25758
25806
(Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro,
25759
- 7-Oct-2016.) Avoid ~ ax-11 . (Revised by Wolf Lammen, 4-May-2023.) $)
25807
+ 7-Oct-2016.) Avoid ~ ax-11 and ~ ax-10 . (Revised by Wolf Lammen,
25808
+ 6-May-2023.) $)
25760
25809
abbid $p |- ( ph -> { x | ps } = { x | ch } ) $=
25761
- ( vy wb wal cab wceq alrimi wsb wcel stdpc4v sbbiv sylib df-clab 3bitr4g
25762
- cv eqrdv syl ) ABCHZDIZBDJZCDJZKAUCDEFLUDGUEUFUDBDGMZCDGMZGTZUENUIUFNUDUC
25763
- DGMUGUHHUCDGOBCDGPQBGDRCGDRSUAUB $.
25810
+ ( vy sbbid abbilem ) ABCDGABCDGEFHI $.
25764
25811
$}
25765
25812
25766
25813
${
25767
- $d x ph $.
25814
+ $d x y ph $. $d y ps $. $d y ch $.
25768
25815
abbidv.1 $e |- ( ph -> ( ps <-> ch ) ) $.
25769
25816
$( Equivalent wff's yield equal class abstractions (deduction form).
25770
- (Contributed by NM, 10-Aug-1993.) $)
25817
+ (Contributed by NM, 10-Aug-1993.) Avoid ~ ax-12 , based on an idea of
25818
+ Steven Nguyen. (Revised by Wolf Lammen, 6-May-2023.) $)
25771
25819
abbidv $p |- ( ph -> { x | ps } = { x | ch } ) $=
25820
+ ( vy sbbidv abbilem ) ABCDFABCDFEGH $.
25821
+ $}
25822
+
25823
+ ${
25824
+ $d x ph $.
25825
+ abbidvOLD.1 $e |- ( ph -> ( ps <-> ch ) ) $.
25826
+ $( Obsolete version of ~ abbidv as of 6-May-2023. (Contributed by NM,
25827
+ 10-Aug-1993.) (Proof modification is discouraged.)
25828
+ (New usage is discouraged.) $)
25829
+ abbidvOLD $p |- ( ph -> { x | ps } = { x | ch } ) $=
25772
25830
( nfv abbid ) ABCDADFEG $.
25773
25831
$}
25774
25832
25775
25833
${
25776
- $d x A $. $d ph x $.
25777
- abbi2dv.1 $e |- ( ph -> ( x e. A <-> ps ) ) $.
25778
- $( Deduction from a wff to a class abstraction. (Contributed by NM,
25779
- 9-Jul-1994.) $)
25780
- abbi2dv $p |- ( ph -> A = { x | ps } ) $=
25781
- ( cv wcel wb wal cab wceq alrimiv abeq2 sylibr ) ACFDGBHZCIDBCJKAOCELBCDM
25782
- N $.
25834
+ $d ph y $. $d ps y $. $d x y $.
25835
+ abbii.1 $e |- ( ph <-> ps ) $.
25836
+ $( Equivalent wff's yield equal class abstractions (inference form).
25837
+ (Contributed by NM, 26-May-1993.) Remove dependency on ~ ax-10 ,
25838
+ ~ ax-11 , and ~ ax-12 . (Revised by Steven Nguyen, 3-May-2023.) $)
25839
+ abbii $p |- { x | ph } = { x | ps } $=
25840
+ ( cab wceq wtru wb a1i abbidv mptru ) ACEBCEFGABCABHGDIJK $.
25841
+
25842
+ $( Theorem abbii is the congruence law for class abstraction. $)
25843
+ $( $j congruence 'abbii'; $)
25783
25844
$}
25784
25845
25785
25846
${
25786
- $d x A $. $d ph x $.
25787
- abbi1dv.1 $e |- ( ph -> ( ps <-> x e. A ) ) $.
25788
- $( Deduction from a wff to a class abstraction. (Contributed by NM,
25789
- 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) $)
25790
- abbi1dv $p |- ( ph -> { x | ps } = A ) $=
25791
- ( cab cv wcel bicomd abbi2dv eqcomd ) ADBCFABCDABCGDHEIJK $.
25847
+ $d ph y $. $d ps y $. $d x y $.
25848
+ abbiiOLD.1 $e |- ( ph <-> ps ) $.
25849
+ $( Obsolete version of ~ abbii as of 7-May-2023. (Contributed by NM,
25850
+ 26-May-1993.) Remove dependency on ~ ax-10 , ~ ax-11 , and ~ ax-12 .
25851
+ (Revised by Steven Nguyen, 3-May-2023.) (New usage is discouraged.)
25852
+ (Proof modification is discouraged.) $)
25853
+ abbiiOLD $p |- { x | ph } = { x | ps } $=
25854
+ ( vy cab wsb cv wcel sbbii df-clab 3bitr4i eqriv ) EACFZBCFZACEGBCEGEHZNI
25855
+ POIABCEDJAECKBECKLM $.
25856
+ $}
25857
+
25858
+ ${
25859
+ abbiiOLDOLD.1 $e |- ( ph <-> ps ) $.
25860
+ $( Obsolete version of ~ abbii as of 3-May-2023. Equivalent wff's yield
25861
+ equal class abstractions (inference form). (Contributed by NM,
25862
+ 26-May-1993.) (Proof modification is discouraged.)
25863
+ (New usage is discouraged.) $)
25864
+ abbiiOLDOLD $p |- { x | ph } = { x | ps } $=
25865
+ ( wb cab wceq abbi mpgbi ) ABEACFBCFGCABCHDI $.
25792
25866
$}
25793
25867
25794
25868
${
@@ -26039,9 +26113,17 @@ choice between (what we call) a "definitional form" where the shorter
26039
26113
clelsb3f.1 $e |- F/_ y A $.
26040
26114
$( Substitution applied to an atomic wff (class version of ~ elsb3 ).
26041
26115
(Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by
26042
- Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux,
26043
- 13-Mar-2017 .) $)
26116
+ Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
26117
+ (Proof shortened by Wolf Lammen, 7-May-2023 .) $)
26044
26118
clelsb3f $p |- ( [ x / y ] y e. A <-> x e. A ) $=
26119
+ ( vw cv wcel wsb nfcri sbco2 clelsb3 sbbii 3bitr3i ) EFCGZEBHZBAHNEAHBFCG
26120
+ ZBAHAFCGNEABBECDIJOPBABECKLAECKM $.
26121
+
26122
+ $( Obsolete version of ~ clelsb3f as of 7-May-2023. (Contributed by
26123
+ Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon,
26124
+ 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
26125
+ (Proof modification is discouraged.) (New usage is discouraged.) $)
26126
+ clelsb3fOLD $p |- ( [ x / y ] y e. A <-> x e. A ) $=
26045
26127
( vw cv wcel wsb nfcri sbco2 nfv eleq1w sbie sbbii 3bitr3i ) EFCGZEBHZBAH
26046
26128
PEAHBFCGZBAHAFCGZPEABBECDIJQRBAPREBREKEBCLMNPSEASEKEACLMO $.
26047
26129
$}
@@ -151083,7 +151165,7 @@ Splicing words (substring replacement)
151083
151165
UXJKYCUUMYBUVGUUOWDYBUUNYCUVGUUPWEYDUYSUVGYDUYRUVFUVBYDUUQYEUUSYGJUXGUVAX
151084
151166
JVLWTAYKYLUVBXQVRWIXRXSXT $.
151085
151167
151086
- $( Reversion is an involution on words. (Contributed by Mario Carneiro,
151168
+ $( Reversal is an involution on words. (Contributed by Mario Carneiro,
151087
151169
1-Oct-2015.) $)
151088
151170
revrev $p |- ( W e. Word A -> ( reverse ` ( reverse ` W ) ) = W ) $=
151089
151171
( vx wcel cc0 chash cfv cfzo co creverse wfn revcl wceq revlen syl oveq2d
@@ -152823,10 +152905,9 @@ the symbol at any position is repeated at multiples of L (modulo the
152823
152905
$( The domain of a doubleton word is an unordered pair. (Contributed by AV,
152824
152906
9-Jan-2020.) $)
152825
152907
s2dm $p |- dom <" A B "> = { 0 , 1 } $=
152826
- ( cc0 c1 cpr cvv cs2 wf chash cfv cfzo co cword wcel s2cli wrdf ax-mp s2len
152827
- c2 wceq oveq2 fzo0to2pr syl6eq eqcomi feq2i mpbir fdmi ) CDEZFABGZUHFUIHCUI
152828
- IJZKLZFUIHZUIFMNULABOFUIPQUHUKFUIUKUHUJSTZUKUHTABRUMUKCSKLUHUJSCKUAUBUCQUDU
152829
- EUFUG $.
152908
+ ( cc0 c1 cpr cvv cs2 chash cfv cfzo co wf cword wcel s2cli wrdf ax-mp s2len
152909
+ c2 wceq oveq2 fzo0to2pr syl6eq feq2i mpbi fdmi ) CDEZFABGZCUHHIZJKZFUHLZUGF
152910
+ UHLUHFMNUKABOFUHPQUJUGFUHUISTZUJUGTABRULUJCSJKUGUISCJUAUBUCQUDUEUF $.
152830
152911
152831
152912
$( Extract the first symbol from a length 3 string. (Contributed by Mario
152832
152913
Carneiro, 13-Jan-2017.) $)
@@ -410161,22 +410242,20 @@ sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1)
410161
410242
$d G i w $. $d N w $.
410162
410243
$( The number of walks represented by words of fixed length is finite if
410163
410244
the number of vertices is finite (in the graph). (Contributed by
410164
- Alexander van der Vekens, 30-Jul-2018.) (Revised by AV,
410165
- 19-Apr-2021 .) $)
410245
+ Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.)
410246
+ (Proof shortened by JJ, 18-Nov-2022 .) $)
410166
410247
wwlksnfi $p |- ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin ) $=
410167
- ( vw vi cvv wcel cn0 wa cfv cfn co wi cv c0 c1 caddc wceq crab cab wn wne
410168
- cvtx cwwlksn cpr cedg cc0 chash cmin cfzo wral cword cwwlks wwlksn df-rab
410169
- syl6eq adantl w3a wb iswwlks a1i anbi1d abbidv 3anan12 anbi1i anass bitri
410170
- eqid abbii eqtr4i eqtrd adantr wss wrdnfi simpr rgenw ss2rab ssfi sylancl
410171
- mpbir eqeltrd ex wnel wo wwlksnndef ioran nnel anbi12i sylbb 0fin pm2.61i
410172
- nsyl4 a1d ) AEFZBGFZHZAUBIZJFZBAUCKZJFZLWOWQWSWOWQHZWRCMZNUAZDMZXAIXCOPKX
410173
- AIUDAUEIZFDUFXAUGIZOUHKUIKUJZHZXEBOPKZQZHZCWPUKZRZJWOWRXLQWQWOWRXAAULIZFZ
410174
- XIHZCSZXLWNWRXPQWMWNWRXICXMRXPCABUMXICXMUNUOUPWOXPXBXAXKFZXFUQZXIHZCSZXLW
410175
- OXOXSCWOXNXRXIXNXRURWODXDAWPXAWPVGXDVGUSUTVAVBXTXQXJHZCSXLXSYACXSXQXGHZXI
410176
- HYAXRYBXIXBXQXFVCVDXQXGXIVEVFVHXJCXKUNVIUOVJVKWTXICXKRZJFZXLYCVLZXLJFWQYD
410177
- WOCXHWPVMUPYEXJXILZCXKUJYFCXKXGXIVNVOXJXICXKVPVSYCXLVQVRVTWAWOTZWSWQYGWRN
410178
- JAEWBZBGWBZWCZWRNQWOABWDYJTYHTZYITZHWOYHYIWEYKWMYLWNAEWFBGWFWGWHWKNJFYGWI
410179
- UTVTWLWJ $.
410248
+ ( vw vi cn0 wcel cfv cfn co wi cv c0 c1 caddc wral wceq crab cab df-rab
410249
+ wa cvtx cwwlksn wne cpr cedg cc0 chash cmin cfzo cword wrdnfi simpr rgenw
410250
+ wss ss2rab mpbir a1i ssfid cwwlks wwlksn syl6eq 3anan12 anass bitri abbii
410251
+ w3a anbi1i eqid iswwlks 3eqtr4i eleq1d syl5ibr wn cvv wnel df-nel biimpri
410252
+ wo olcd wwlksnndef syl 0fin syl6eqel a1d pm2.61i ) BEFZAUAGZHFZBAUBIZHFZJ
410253
+ WHWJWFCKZLUCZDKZWKGWMMNIWKGUDAUEGZFDUFWKUGGZMUHIUIIOZTZWOBMNIZPZTZCWGUJZQ
410254
+ ZHFWHWSCXAQZXBCWRWGUKXBXCUNZWHXDWTWSJZCXAOXECXAWQWSULUMWTWSCXAUOUPUQURWFW
410255
+ IXBHWFWIWKAUSGZFZWSTZCRZXBWFWIWSCXFQXICABUTWSCXFSVAWLWKXAFZWPVFZWSTZCRXJW
410256
+ TTZCRXIXBXLXMCXLXJWQTZWSTXMXKXNWSWLXJWPVBVGXJWQWSVCVDVEXHXLCXGXKWSDWNAWGW
410257
+ KWGVHWNVHVIVGVEWTCXASVJVAVKVLWFVMZWJWHXOWILHXOAVNVOZBEVOZVRWILPXOXQXPXQXO
410258
+ BEVPVQVSABVTWAWBWCWDWE $.
410180
410259
410181
410260
$( Obsolete version of ~ wwlksnfiOLD as of 4-May-2023. (Contributed by
410182
410261
Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.)
0 commit comments