@@ -16123,6 +16123,16 @@ modal logic (the other standard formulation being ~ extru ). Note: This
16123
16123
( wn ax-5 spimw ) ABCDBFCGEH $.
16124
16124
$}
16125
16125
16126
+ ${
16127
+ $d x y $. $d x ps $.
16128
+ spvv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
16129
+ $( Version of ~ spv with a disjoint variable condition, which does not
16130
+ require ~ ax-7 , ~ ax-12 , ~ ax-13 . (Contributed by BJ,
16131
+ 31-May-2019.) $)
16132
+ spvv $p |- ( A. x ph -> ps ) $=
16133
+ ( weq biimpd spimvw ) ABCDCDFABEGH $.
16134
+ $}
16135
+
16126
16136
${
16127
16137
$d x y $. $d y ph $.
16128
16138
spnfw.1 $e |- ( -. ph -> A. x -. ph ) $.
@@ -17620,7 +17630,8 @@ This axiom scheme is logically redundant (see ~ ax12w ) but is used as an
17620
17630
17621
17631
It appears that this scheme cannot be derived directly from Tarski's
17622
17632
axioms without auxiliary axiom scheme ~ ax-12 . It is thought the best we
17623
- can do using only Tarski's axioms is ~ spw . (Contributed by NM,
17633
+ can do using only Tarski's axioms is ~ spw . Also see ~ spvw where ` x `
17634
+ and ` ph ` are distinct, using fewer axioms. (Contributed by NM,
17624
17635
21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof
17625
17636
shortened by Wolf Lammen, 13-Jan-2018.) $)
17626
17637
sp $p |- ( A. x ph -> ph ) $=
@@ -19415,8 +19426,8 @@ theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the
19415
19426
${
19416
19427
$d x ps $.
19417
19428
spv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
19418
- $( Specialization, using implicit substitution. (Contributed by NM,
19419
- 30-Aug-1993.) $)
19429
+ $( Specialization, using implicit substitution. See ~ spvv for a version
19430
+ using fewer axioms. (Contributed by NM, 30-Aug-1993.) $)
19420
19431
spv $p |- ( A. x ph -> ps ) $=
19421
19432
( weq biimpd spimv ) ABCDCDFABEGH $.
19422
19433
$}
@@ -32679,13 +32690,14 @@ his New Foundations set theory (axiom system NF of [Quine] p. 331). In
32679
32690
~ elirrv (derived from the Axiom of Regularity), so for us the Russell
32680
32691
class equals the universe ` _V ` (theorem ~ ruv ). See ~ ruALT for an
32681
32692
alternate proof of ~ ru derived from that fact. (Contributed by NM,
32682
- 7-Aug-1994.) (Proof modification is discouraged.) $)
32693
+ 7-Aug-1994.) Remove use of ~ ax-13 . (Revised by BJ, 12-Oct-2019.)
32694
+ (Proof modification is discouraged.) $)
32683
32695
ru $p |- { x | x e/ x } e/ _V $=
32684
32696
( vy cv wnel cab cvv wcel wceq wex wel wb wn pm5.19 eleq1w df-nel eleq12d
32685
- wal id notbid mtbir syl5bb bibi12d spv mto abeq2 nex isset nelir ) ACZUID
32686
- ZAEZFUKFGBCZUKHZBIUMBUMABJZUJKZAQZUPBBJZUQLZKZUQMUOUSABUIULHZUNUQUJURABUL
32687
- NUJAAJZLUTURUIUIOUTVAUQUTUIULUIULUTRZVBPSUAUBUCUDUJAULUETUFBUKUGTUH $.
32688
- $( $j usage 'ru' avoids 'ax-reg'; $)
32697
+ wal id notbid mtbir syl5bb bibi12d spvv mto abeq2 nex isset nelir ) ACZUI
32698
+ DZAEZFUKFGBCZUKHZBIUMBUMABJZUJKZAQZUPBBJZUQLZKZUQMUOUSABUIULHZUNUQUJURABU
32699
+ LNUJAAJZLUTURUIUIOUTVAUQUTUIULUIULUTRZVBPSUAUBUCUDUJAULUETUFBUKUGTUH $.
32700
+ $( $j usage 'ru' avoids 'ax-13' 'ax- reg'; $)
32689
32701
$}
32690
32702
32691
32703
@@ -45437,12 +45449,14 @@ holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc]
45437
45449
${
45438
45450
$d x y z $.
45439
45451
$( No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed
45440
- by NM, 23-Aug-1993.) $)
45452
+ by NM, 23-Aug-1993.) Remove use of ~ ax-12 and ~ ax-13 . (Revised by
45453
+ BJ, 31-May-2019.) $)
45441
45454
nalset $p |- -. E. x A. y y e. x $=
45442
45455
( vz wel wn wex wal alexn wa wb ax-sep elequ1 elequ2 bitrd notbid anbi12d
45443
- weq bibi12d spv pclem6 syl eximii mpgbi ) BADZEZBFUDBGAFEAUDABHCBDZCADZCC
45444
- DZEZIZJZCGZUEBUICBAKULBBDZUDUMEZIZJZUEUKUPCBCBQZUFUMUJUOCBBLUQUGUDUIUNCBA
45445
- LUQUHUMUQUHBCDUMCBCLCBBMNOPRSUMUDTUAUBUC $.
45456
+ weq bibi12d spvv pclem6 syl eximii mpgbi ) BADZEZBFUDBGAFEAUDABHCBDZCADZC
45457
+ CDZEZIZJZCGZUEBUICBAKULBBDZUDUMEZIZJZUEUKUPCBCBQZUFUMUJUOCBBLUQUGUDUIUNCB
45458
+ ALUQUHUMUQUHBCDUMCBCLCBBMNOPRSUMUDTUAUBUC $.
45459
+ $( $j usage 'nalset' avoids 'ax-12' 'ax-13'; $)
45446
45460
$}
45447
45461
45448
45462
${
@@ -522862,16 +522876,6 @@ may also add the (partially) unbundled versions which dipense with ~ ax-13 ,
522862
522876
( nfv bj-spimev ) ABCDACFEG $.
522863
522877
$}
522864
522878
522865
- ${
522866
- $d x y $. $d x ps $.
522867
- bj-spvv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
522868
- $( Version of ~ spv with a disjoint variable condition, which does not
522869
- require ~ ax-7 , ~ ax-12 , ~ ax-13 . (Contributed by BJ, 31-May-2019.)
522870
- (Proof modification is discouraged.) $)
522871
- bj-spvv $p |- ( A. x ph -> ps ) $=
522872
- ( weq biimpd spimvw ) ABCDCDFABEGH $.
522873
- $}
522874
-
522875
522879
${
522876
522880
$d x y $.
522877
522881
bj-speiv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
@@ -522903,7 +522907,7 @@ may also add the (partially) unbundled versions which dipense with ~ ax-13 ,
522903
522907
require ~ ax-13 . (Contributed by BJ, 31-May-2019.)
522904
522908
(Proof modification is discouraged.) $)
522905
522909
bj-chvarvv $p |- ps $=
522906
- ( bj- spvv mpg ) ABCABCDEGFH $.
522910
+ ( spvv mpg ) ABCABCDEGFH $.
522907
522911
$}
522908
522912
522909
522913
${
@@ -523506,18 +523510,6 @@ at least two objects (see ~ bj-dtru ). (Contributed by BJ,
523506
523510
UQVBULUQUNUMAHZHZEIVBVJUPEUNUMAUCTVIVBEBUNUMVAAEBDUDUEUFUGUHUITUK $.
523507
523511
$}
523508
523512
523509
- ${
523510
- $d x y z $.
523511
- $( Remove dependency on ~ ax-12 and ~ ax-13 (and ~ df-nf ) from ~ nalset .
523512
- (Contributed by BJ, 31-May-2019.)
523513
- (Proof modification is discouraged.) $)
523514
- bj-nalset $p |- -. E. x A. y y e. x $=
523515
- ( vz wel wn wex wal alexn wa wb ax-sep elequ1 elequ2 bitrd notbid anbi12d
523516
- weq bibi12d bj-spvv pclem6 syl eximii mpgbi ) BADZEZBFUDBGAFEAUDABHCBDZCA
523517
- DZCCDZEZIZJZCGZUEBUICBAKULBBDZUDUMEZIZJZUEUKUPCBCBQZUFUMUJUOCBBLUQUGUDUIU
523518
- NCBALUQUHUMUQUHBCDUMCBCLCBBMNOPRSUMUDTUAUBUC $.
523519
- $}
523520
-
523521
523513
${
523522
523514
$d x y z $.
523523
523515
$( Remove dependency on ~ ax-13 from ~ el . (Contributed by BJ,
@@ -525342,14 +525334,13 @@ FOL part ( ~ bj-ru0 ) and then two versions ( ~ bj-ru1 and ~ bj-ru ).
525342
525334
${
525343
525335
$d x y $.
525344
525336
$( The FOL part of Russell's paradox ~ ru (see also ~ bj-ru1 , ~ bj-ru ).
525345
- Use of ~ elequ1 , ~ bj-elequ12 , ~ bj-spvv (instead of ~ eleq1 ,
525346
- ~ eleq12d , ~ spv as in ~ ru ) permits to remove dependency on ~ ax-10 ,
525347
- ~ ax-11 , ~ ax-12 , ~ ax-13 , ~ ax-ext , ~ df-sb , ~ df-clab ,
525348
- ~ df-cleq , ~ df-clel . (Contributed by BJ, 12-Oct-2019.)
525349
- (Proof modification is discouraged.) $)
525337
+ Use of ~ elequ1 , ~ bj-elequ12 (instead of ~ eleq1 , ~ eleq12d as in
525338
+ ~ ru ) permits to remove dependency on ~ ax-10 , ~ ax-11 , ~ ax-12 ,
525339
+ ~ ax-ext , ~ df-sb , ~ df-clab , ~ df-cleq , ~ df-clel . (Contributed
525340
+ by BJ, 12-Oct-2019.) (Proof modification is discouraged.) $)
525350
525341
bj-ru0 $p |- -. A. x ( x e. y <-> -. x e. x ) $=
525351
- ( wel wal pm5.19 weq elequ1 bj-elequ12 anidms notbid bibi12d bj- spvv mto
525352
- wn wb ) ABCZAACZNZOZADBBCZTNZOZTESUBABABFZPTRUAABBGUCQTUCQTOABABHIJKLM $.
525342
+ ( wel wn wal pm5.19 weq elequ1 bj-elequ12 anidms notbid bibi12d spvv mto
525343
+ wb ) ABCZAACZDZOZAEBBCZTDZOZTFSUBABABGZPTRUAABBHUCQTUCQTOABABIJKLMN $.
525353
525344
$}
525354
525345
525355
525346
${
0 commit comments