@@ -115008,7 +115008,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115008
115008
isummolem3.5 $e |- ( ph -> ( M e. NN /\ N e. NN ) ) $.
115009
115009
isummolem3.6 $e |- ( ph -> f : ( 1 ... M ) -1-1-onto-> A ) $.
115010
115010
isummolem3.7 $e |- ( ph -> K : ( 1 ... N ) -1-1-onto-> A ) $.
115011
- $( Lemma for ~ isummo . (Contributed by Jim Kingdon, 15-Aug-2022.) $)
115011
+ $( Lemma for ~ summodc . (Contributed by Jim Kingdon, 15-Aug-2022.) $)
115012
115012
isummolemnm $p |- ( ph -> N = M ) $=
115013
115013
( c1 cfz co chash wcel wf1o cfv cv ccnv ccom 1zzd cn simprd nnzd fzfigd
115014
115014
f1ocnv syl f1oco syl2anc fihasheqf1od wceq nnnn0 hashfz1 simpld 3eqtr3d
@@ -115024,7 +115024,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115024
115024
[_ ( f ` n ) / k ]_ B , 0 ) ) $.
115025
115025
isummolem3.4 $e |- H = ( n e. NN |-> if ( n <_ N ,
115026
115026
[_ ( K ` n ) / k ]_ B , 0 ) ) $.
115027
- $( Lemma for ~ isummo . (Contributed by Mario Carneiro, 29-Mar-2014.)
115027
+ $( Lemma for ~ summodc . (Contributed by Mario Carneiro, 29-Mar-2014.)
115028
115028
(Revised by Jim Kingdon, 9-Apr-2023.) $)
115029
115029
summodclem3 $p |- ( ph ->
115030
115030
( seq 1 ( + , G ) ` M ) = ( seq 1 ( + , H ) ` N ) ) $=
@@ -115074,7 +115074,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115074
115074
JUYHVUKUYMWBUYHVUNVUKVUOUYKUFKWJVHWKZVUCUUAVUIXEXFVUPYTUUBUUCAKLUUEUVHY
115075
115075
MUUD $.
115076
115076
115077
- $( Lemma for ~ isummo . (Contributed by Mario Carneiro, 29-Mar-2014.)
115077
+ $( Lemma for ~ summodc . (Contributed by Mario Carneiro, 29-Mar-2014.)
115078
115078
Use ~ summodclem3 instead. (New usage is discouraged.) $)
115079
115079
isummolem3 $p |- ( ph ->
115080
115080
( seq 1 ( + , G , CC ) ` M ) = ( seq 1 ( + , H , CC ) ` N ) ) $=
@@ -115140,7 +115140,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115140
115140
summolem2.7 $e |- ( ph -> A C_ ( ZZ>= ` M ) ) $.
115141
115141
summolem2.8 $e |- ( ph -> f : ( 1 ... N ) -1-1-onto-> A ) $.
115142
115142
summolem2.9 $e |- ( ph -> K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) $.
115143
- $( Lemma for ~ isummo . (Contributed by Mario Carneiro, 3-Apr-2014.)
115143
+ $( Lemma for ~ summodc . (Contributed by Mario Carneiro, 3-Apr-2014.)
115144
115144
(Revised by Jim Kingdon, 9-Apr-2023.) $)
115145
115145
summodclem2a $p |- ( ph -> seq M ( + , F )
115146
115146
~~> ( seq 1 ( + , G ) ` N ) ) $=
@@ -115209,7 +115209,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115209
115209
QBUXTUMZUAAUXLUXQURVYQVYRUSAUXQUXLUYDUWSUXLUXQBUXTUWTVNVOUYFPQUXAAUXPLU
115210
115210
XIUYCUXBUXDUXE $.
115211
115211
115212
- $( Lemma for ~ isummo . (Contributed by Mario Carneiro, 3-Apr-2014.)
115212
+ $( Lemma for ~ summodc . (Contributed by Mario Carneiro, 3-Apr-2014.)
115213
115213
(Revised by Jim Kingdon, 3-Sep-2022.) Use ~ summodclem2a instead.
115214
115214
(New usage is discouraged.) $)
115215
115215
isummolem2a $p |- ( ph -> seq M ( + , F , CC )
@@ -115285,7 +115285,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115285
115285
$d a f g k m n ph $. $d a f g k m n x $. $d a f m y $.
115286
115286
summodclem2.g $e |- G = ( n e. NN |-> if ( n <_ ( # ` A ) ,
115287
115287
[_ ( f ` n ) / k ]_ B , 0 ) ) $.
115288
- $( Lemma for ~ isummo . (Contributed by Mario Carneiro, 3-Apr-2014.)
115288
+ $( Lemma for ~ summodc . (Contributed by Mario Carneiro, 3-Apr-2014.)
115289
115289
(Revised by Jim Kingdon, 4-May-2023.) $)
115290
115290
summodclem2 $p |- ( ( ph /\
115291
115291
E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ A. j e. ( ZZ>= ` m ) DECID j e. A
@@ -115381,7 +115381,7 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115381
115381
$d a f g k m n ph $. $d a f g k m n x $. $d a f m y $.
115382
115382
isummolem2.g $e |- G = ( n e. NN |-> if ( n <_ ( # ` A ) ,
115383
115383
[_ ( f ` n ) / k ]_ B , 0 ) ) $.
115384
- $( Lemma for ~ isummo . (Contributed by Mario Carneiro, 3-Apr-2014.)
115384
+ $( Lemma for ~ summodc . (Contributed by Mario Carneiro, 3-Apr-2014.)
115385
115385
(Revised by Jim Kingdon, 8-Sep-2022.) Use ~ summodclem2 instead.
115386
115386
(New usage is discouraged.) $)
115387
115387
isummolem2 $p |- ( ( ph /\
@@ -115409,69 +115409,6 @@ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )
115409
115409
VCUVHWTXAOUVEXBUUIUUJYQUUQXCAUUGYNUVBXDYJYKYMUUHUVBVOUUIUUJYQUUQXEUUIUU
115410
115410
MUUQWCXFXGXHXIYEYSYLXJWEXLYRYSYEXKXMXNXHXOXPXQ $.
115411
115411
$}
115412
-
115413
- $d A a f g j k m n $. $d A f g j k m n x y $. $d B a f j m n $.
115414
- $d F f j k m n x y $. $d G g n x y $. $d a f g j k m n ph $.
115415
- $d ph x y $.
115416
- isummo.3 $e |- G = ( n e. NN
115417
- |-> if ( n <_ ( # ` A ) , [_ ( f ` n ) / k ]_ B , 0 ) ) $.
115418
- $( A sum has at most one limit. (Contributed by Mario Carneiro,
115419
- 3-Apr-2014.) (Revised by Jim Kingdon, 10-Sep-2022.) Use ~ summodc
115420
- instead. (New usage is discouraged.) $)
115421
- isummo $p |- ( ph -> E* x
115422
- ( E. m e. ZZ ( A C_ ( ZZ>= ` m )
115423
- /\ A. j e. ( ZZ>= ` m ) DECID j e. A
115424
- /\ seq m ( + , F , CC ) ~~> x ) \/
115425
- E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\
115426
- x = ( seq 1 ( + , G , CC ) ` m ) ) ) ) $=
115427
- ( cfv wcel cz wceq wa cn vy vg va cv cuz wss wdc wral caddc cseq4 cli wbr
115428
- cc w3a wrex c1 cfz co wf1o wex wo weq wi wal fveq2 sseq2d raleqdv iseqeq1
115429
- wmo breq1d 3anbi123d cbvrexv reeanv simprl3 sylan simplrl simplrr simprl1
115430
- simpll simprr1 eleq1w dcbid simprl2 adantr rspcdva simprr2 isumrb simprr3
115431
- simpr mpbid climuni syl2anc exp31 rexlimdvv syl5bir expdimp syl5bi equcom
115432
- isummolem2 jaod syl6ib impancom chash cle csb cc0 cif wb oveq2 f1oeq2 syl
115433
- cmpt eqeq2d anbi12d exbidv f1oeq1 breq1 csbeq1d ifbieq1d cbvmptv mpteq2dv
115434
- fveq1 ifeq1d syl5eq iseqeq3 fveq1d cbvexv syl6bb nnzd fzfigd fihasheqf1od
115435
- eeanv an4 cn0 nnnn0d hashfz1 eqtr3d anbi2d expimpd rexbidv ifbid eqeltrrd
115436
- 1zzd simprr breq2d simprl fveq2d jca oveq2d eqtri isummolem3 eqtrd eqeq12
115437
- syl5ibrcom sylbid exlimdvv rexlimdvva jaodan alrimivv breq2 3anbi3d eqeq1
115438
- orbi12d mo4 sylibr ) ACHUDZUEOZUFZFUDZCPZUGZFUVGUHZUIUMJUVFUJZBUDZUKULZUN
115439
- ZHQUOZUPUVFUQURZCEUDZUSZUVNUVFUIUMKUPUJZOZRZSZEUTZHTUOZVAZUVHUVLUVMUAUDZU
115440
- KULZUNZHQUOZUVTUWHUWBRZSZEUTZHTUOZVAZSBUAVBZVCZUAVDBVDUWGBVIAUWRBUAAUWGUW
115441
- PUWQAUVQUWPUWQVCUWFAUVQSZUWKUWQUWOUWKCIUDZUEOZUFZUVKFUXAUHZUIUMJUWTUJZUWH
115442
- UKULZUNZIQUOZUWSUWQUWJUXFHIQHIVBZUVHUXBUVLUXCUWIUXEUXHUVGUXACUVFUWTUEVEZV
115443
- FUXHUVKFUVGUXAUXIVGUXHUVMUXDUWHUKUIUMJUVFUWTVHVJVKVLAUVQUXGUWQUVQUXGSUVPU
115444
- XFSZIQUOHQUOAUWQUVPUXFHIQQVMAUXJUWQHIQQAUVFQPZUWTQPZSZUXJUWQAUXMSZUXJSZUX
115445
- DUVNUKULZUXEUWQUXOUVOUXPUVHUVLUVOUXFUXNVNUXOCDUVNGJUVFUWTLUXOAGUDZCPZDUMP
115446
- ZAUXMUXJVSMVOAUXKUXLUXJVPAUXKUXLUXJVQUVHUVLUVOUXFUXNVRUXBUXCUXEUVPUXNVTUX
115447
- OUXQUVGPZSUVKUXRUGZFUVGUXQFGVBUVJUXRFGCWAWBZUXOUVLUXTUVHUVLUVOUXFUXNWCWDU
115448
- XOUXTWIWEUXOUXQUXAPZSUVKUYAFUXAUXQUYBUXOUXCUYCUXBUXCUXEUVPUXNWFWDUXOUYCWI
115449
- WEWGWJUXBUXCUXEUVPUXNWHUVNUWHUXDWKWLWMWNWOWPWQABUACDEFGHIJKLMNWSWTAUWFSZU
115450
- WKUWQUWOAUWKUWFUWQAUWKSUWFUABVBUWQAUABCDEFGHIJKLMNWSUABWRXAXBUWOUPUWTUQUR
115451
- ZCUBUDZUSZUWHUWTUIUMUCTUCUDZCXCOZXDULZGUYHUYFOZDXEZXFXGZXLZUPUJZOZRZSZUBU
115452
- TZITUOZUYDUWQUWNUYSHITUXHUWNUYECUVSUSZUWHUWTUWAOZRZSZEUTUYSUXHUWMVUDEUXHU
115453
- VTVUAUWLVUCUXHUVRUYERUVTVUAXHUVFUWTUPUQXIUVRUYECUVSXJXKUXHUWBVUBUWHUVFUWT
115454
- UWAVEXMXNXOVUDUYREUBEUBVBZVUAUYGVUCUYQUYECUVSUYFXPVUEVUBUYPUWHVUEUWTUWAUY
115455
- OVUEKUYNRUWAUYORVUEKITUWTUYIXDULZGUWTUVSOZDXEZXFXGZXLZUYNNVUEVUJUCTUYJGUY
115456
- HUVSOZDXEZXFXGZXLUYNIUCTVUIVUMIUCVBZVUFUYJVUHVULXFUWTUYHUYIXDXQVUNGVUGVUK
115457
- DUWTUYHUVSVEXRXSXTVUEUCTVUMUYMVUEUYJVULUYLXFVUEGVUKUYKDUYHUVSUYFYBXRYCYAY
115458
- DYDUIUMKUYNUPYEXKYFXMXNYGYHVLAUWFUYTUWQUWFUYTSUWEUYSSZITUOHTUOAUWQUWEUYSH
115459
- ITTVMAVUOUWQHITTVUOUWDUYRSZUBUTEUTAUVFTPZUWTTPZSZSZUWQUWDUYREUBYLVUTVUPUW
115460
- QEUBVUPUVTUYGSZUWCUYQSZSVUTUWQUVTUWCUYGUYQYMVUTVVAVVBUWQVUTVVASZVVBUWCUWH
115461
- UWTUIUMUCTUYHUWTXDULZUYLXFXGZXLZUPUJZOZRZSZUWQVVCUYQVVIUWCVVCUYPVVHUWHVVC
115462
- UWTUYOVVGVVCUYNVVFRUYOVVGRVVCUCTUYMVVEVVCUYJVVDUYLXFVVCUYIUWTUYHXDVVCUYEX
115463
- COZUYIUWTVVCUYECUYFVVCUPUWTVVCUUCZVVCUWTAVUQVURVVAVQZYIYJVUTUVTUYGUUDZYKV
115464
- VCUWTYNPVVKUWTRVVCUWTVVMYOUWTYPXKYQUUEUUAYAUIUMUYNVVFUPYEXKYFXMYRVVCUWQVV
115465
- JUWBVVHRVVCUWBUYIUWAOVVHVVCUVFUYIUWAVVCUVRXCOZUVFUYIVVCUVFYNPVVOUVFRVVCUV
115466
- FAVUQVURVVAVPZYOUVFYPXKVVCUVRCUVSVVCUPUVFVVLVVCUVFVVPYIYJVUTUVTUYGUUFZYKY
115467
- QZUUGVVCCDEGFJKVVFUYFUYIUWTLVVCAUXRUXSAVUSVVAVSMVOVVCUYITPVURVVCUVFUYITVV
115468
- RVVPUUBVVMUUHVVCUVTUPUYIUQURZCUVSUSZVVQVVCUVRVVSRUVTVVTXHVVCUVFUYIUPUQVVR
115469
- UUIUVRVVSCUVSXJXKWJVVNKVUJFTUVIUYIXDULZGUVIUVSOZDXEZXFXGZXLNIFTVUIVWDIFVB
115470
- ZVUFVWAVUHVWCXFUWTUVIUYIXDXQVWEGVUGVWBDUWTUVIUVSVEXRXSXTUUJUCFTVVEUVIUWTX
115471
- DULZGUVIUYFOZDXEZXFXGUCFVBZVVDVWFUYLVWHXFUYHUVIUWTXDXQVWIGUYKVWGDUYHUVIUY
115472
- FVEXRXSXTUUKUULUVNUWBUWHVVHUUMUUNUUOYSWQUUPWOUUQWOWPWQWTUURYSUUSUWGUWPBUA
115473
- UWQUVQUWKUWFUWOUWQUVPUWJHQUWQUVOUWIUVHUVLUVNUWHUVMUKUUTUVAYTUWQUWEUWNHTUW
115474
- QUWDUWMEUWQUWCUWLUVTUVNUWHUWBUVBYRXOYTUVCUVDUVE $.
115475
115412
$}
115476
115413
115477
115414
${
0 commit comments