@@ -283995,7 +283995,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
283995
283995
$( Algebraic span function. $)
283996
283996
casp $a class AlgSpan $.
283997
283997
283998
- $( Class of algebra scalars function. $)
283998
+ $( Class of algebra scalar lifting function. $)
283999
283999
cascl $a class algSc $.
284000
284000
284001
284001
${
@@ -284407,8 +284407,8 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284407
284407
asclfval.k $e |- K = ( Base ` F ) $.
284408
284408
asclfval.s $e |- .x. = ( .s ` W ) $.
284409
284409
asclfval.o $e |- .1. = ( 1r ` W ) $.
284410
- $( Function value of the algebra scalars function. (Contributed by Mario
284411
- Carneiro, 8-Mar-2015.) $)
284410
+ $( Function value of the algebra scalar lifting function. (Contributed by
284411
+ Mario Carneiro, 8-Mar-2015.) $)
284412
284412
asclfval $p |- A = ( x e. K |-> ( x .x. .1. ) ) $=
284413
284413
( vw cascl cfv cmpt cbs csca eqtr4di c0 cv cvv wcel wceq cur cvsca fveq2d
284414
284414
co fveq2 eqidd oveq123d mpteq12dv df-ascl mptfvmpt wn mpt0 eqtrid mpteq1d
@@ -284430,7 +284430,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284430
284430
asclfn.a $e |- A = ( algSc ` W ) $.
284431
284431
asclfn.f $e |- F = ( Scalar ` W ) $.
284432
284432
asclfn.k $e |- K = ( Base ` F ) $.
284433
- $( Unconditional functionality of the algebra scalars function.
284433
+ $( Unconditional functionality of the algebra scalar lifting function.
284434
284434
(Contributed by Mario Carneiro, 9-Mar-2015.) $)
284435
284435
asclfn $p |- A Fn K $=
284436
284436
( vx cv cur cfv cvsca co ovex eqid asclfval fnmpti ) HCHIZDJKZDLKZMARSTNH
@@ -284446,7 +284446,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284446
284446
${
284447
284447
asclf.k $e |- K = ( Base ` F ) $.
284448
284448
asclf.b $e |- B = ( Base ` W ) $.
284449
- $( The algebra scalars function is a function into the base set.
284449
+ $( The algebra scalar lifting function is a function into the base set.
284450
284450
(Contributed by Mario Carneiro, 4-Jul-2015.) $)
284451
284451
asclf $p |- ( ph -> A : K --> B ) $=
284452
284452
( vx cv cur cfv cvsca wcel adantr eqid co clmod simpr ringidcl lmodvscl
@@ -284455,8 +284455,8 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284455
284455
NUMDEFGHKUTUSUJUK $.
284456
284456
$}
284457
284457
284458
- $( The algebra scalars function is a group homomorphism. (Contributed by
284459
- Mario Carneiro, 4-Jul-2015.) $)
284458
+ $( The algebra scalar lifting function is a group homomorphism.
284459
+ (Contributed by Mario Carneiro, 4-Jul-2015.) $)
284460
284460
asclghm $p |- ( ph -> A e. ( F GrpHom W ) ) $=
284461
284461
( vx vy cplusg cfv cbs eqid crg wcel syl co wceq asclval lmodring ringgrp
284462
284462
clmod asclf cv cur cvsca adantr simprl simprr ringidcl lmodvsdir syl13anc
@@ -284529,7 +284529,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284529
284529
ascldimul.k $e |- K = ( Base ` F ) $.
284530
284530
ascldimul.t $e |- .X. = ( .r ` W ) $.
284531
284531
ascldimul.s $e |- .x. = ( .r ` F ) $.
284532
- $( The algebra scalars function distributes over multiplication.
284532
+ $( The algebra scalar lifting function distributes over multiplication.
284533
284533
(Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN,
284534
284534
5-Nov-2023.) $)
284535
284535
ascldimul $p |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) ->
@@ -284564,8 +284564,8 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284564
284564
$d x y A $. $d x y F $. $d x y W $.
284565
284565
asclrhm.a $e |- A = ( algSc ` W ) $.
284566
284566
asclrhm.f $e |- F = ( Scalar ` W ) $.
284567
- $( The algebra scalars function is a ring homomorphism. (Contributed by
284568
- Mario Carneiro, 8-Mar-2015.) $)
284567
+ $( The algebra scalar lifting function is a ring homomorphism.
284568
+ (Contributed by Mario Carneiro, 8-Mar-2015.) $)
284569
284569
asclrhm $p |- ( W e. AssAlg -> A e. ( F RingHom W ) ) $=
284570
284570
( vx vy casa wcel cbs cfv cmulr cur assasca assaring assalmod ascl1 cv co
284571
284571
eqid wceq ascldimul 3expb asclghm isrhm2d ) CHIZFGBJKZBCBLKZCLKZBMKZACMKZ
@@ -292258,7 +292258,7 @@ series in the subring which are also polynomials (in the parent ring).
292258
292258
( crg wcel cid cfv ply1sca2 ply1ring ply1lmod cbs cnx baseid strfvi
292259
292259
asclf ) DJKABDLMECGCDFNCDFOCDFPDQRQMESHTIUA $.
292260
292260
292261
- $( The value of the algebra scalars function for (univariate)
292261
+ $( The value of the algebra scalar lifting function for (univariate)
292262
292262
polynomials applied to a scalar results in a constant polynomial.
292263
292263
(Contributed by AV, 27-Nov-2019.) $)
292264
292264
ply1sclcl $p |- ( ( R e. Ring /\ S e. K ) -> ( A ` S ) e. B ) $=
@@ -301895,8 +301895,9 @@ are univariate (or multivariate) polynomials. See Wikipedia "Polynomial
301895
301895
pmat0opsc.z $e |- .0. = ( 0g ` R ) $.
301896
301896
$( The zero polynomial matrix over a ring represented as operation with
301897
301897
"lifted scalars" (i.e. elements of the ring underlying the polynomial
301898
- ring embedded into the polynomial ring by the scalar injection/algebraic
301899
- scalars function ` algSc ` ). (Contributed by AV, 16-Nov-2019.) $)
301898
+ ring embedded into the polynomial ring by the scalar injection/algebra
301899
+ scalar lifting function ` algSc ` ). (Contributed by AV,
301900
+ 16-Nov-2019.) $)
301900
301901
pmat0opsc $p |- ( ( N e. Fin /\ R e. Ring )
301901
301902
-> ( 0g ` C ) = ( i e. N , j e. N |-> ( A ` .0. ) ) ) $=
301902
301903
( cfn wcel crg wa c0g cfv cmpo eqid pmat0op wceq ply1scl0 eqcomd mpoeq3dv
@@ -835256,8 +835257,8 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835256
835257
${
835257
835258
$d A x $. $d C x $. $d M x $. $d W x $. $d ph x $.
835258
835259
asclcntr.m $e |- M = ( mulGrp ` W ) $.
835259
- $( The algebra scalars function maps into the center of the algebra.
835260
- Equivalently, a lifted scalar is a center of the algebra.
835260
+ $( The algebra scalar lifting function maps into the center of the
835261
+ algebra. Equivalently, a lifted scalar is a center of the algebra.
835261
835262
(Contributed by Zhi Wang, 11-Sep-2025.) $)
835262
835263
asclcntr $p |- ( ph -> ( A ` C ) e. ( Cntr ` M ) ) $=
835263
835264
( vx cbs cfv eqid wcel co adantr ccntr asclelbas cv wa casa cmulr simpr
@@ -835280,7 +835281,7 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835280
835281
a "vector" element of ` W ` , of the "scalar" ` C ` , which is now an
835281
835282
upper triangular matrix, with the "vector" ` X e. ( Base `` W ) ` .
835282
835283
835283
- Equivalently, the algebra scalars function is not necessarily
835284
+ Equivalently, the algebra scalar lifting function is not necessarily
835284
835285
injective unless the algebra is faithful. Therefore, all "scalar
835285
835286
injection" was renamed.
835286
835287
0 commit comments