Skip to content

Commit c10e6b9

Browse files
author
icecream17
authored
rmv ax-5 from moimi + rename prospective space definitions (#3166)
* moimi w/o ax-5 * rename projective space definitions * operatorname around PrjSp + rewrap
1 parent 57058dd commit c10e6b9

File tree

2 files changed

+110
-97
lines changed

2 files changed

+110
-97
lines changed

discouraged

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16580,6 +16580,7 @@ New usage of "mobidvOLDOLD" is discouraged (0 uses).
1658016580
New usage of "moeqOLD" is discouraged (0 uses).
1658116581
New usage of "moeuOLD" is discouraged (0 uses).
1658216582
New usage of "mofOLD" is discouraged (0 uses).
16583+
New usage of "moimiOLD" is discouraged (0 uses).
1658316584
New usage of "mptssALT" is discouraged (0 uses).
1658416585
New usage of "mpv" is discouraged (1 uses).
1658516586
New usage of "mulassnq" is discouraged (10 uses).
@@ -19425,6 +19426,7 @@ Proof modification of "mobidvOLDOLD" is discouraged (46 steps).
1942519426
Proof modification of "moeqOLD" is discouraged (29 steps).
1942619427
Proof modification of "moeuOLD" is discouraged (52 steps).
1942719428
Proof modification of "mofOLD" is discouraged (62 steps).
19429+
Proof modification of "moimiOLD" is discouraged (17 steps).
1942819430
Proof modification of "mptssALT" is discouraged (57 steps).
1942919431
Proof modification of "n0lpligALT" is discouraged (74 steps).
1943019432
Proof modification of "n2dvds1OLD" is discouraged (37 steps).

set.mm

Lines changed: 108 additions & 97 deletions
Original file line numberDiff line numberDiff line change
@@ -21848,10 +21848,22 @@ proposition with a distinct variable (closed form of ~ nfsb4 ).
2184821848
$}
2184921849

2185021850
${
21851+
$d x y $. $d y ph $. $d y ps $.
2185121852
moimi.1 $e |- ( ph -> ps ) $.
2185221853
$( The at-most-one quantifier reverses implication. (Contributed by NM,
21853-
15-Feb-2006.) $)
21854+
15-Feb-2006.) Remove use of ~ ax-5 . (Revised by Steven Nguyen,
21855+
9-May-2023.) $)
2185421856
moimi $p |- ( E* x ps -> E* x ph ) $=
21857+
( vy weq wi wal wex wmo imim1i alimi eximi df-mo 3imtr4i ) BCEFZGZCHZEIAP
21858+
GZCHZEIBCJACJRTEQSCABPDKLMBCENACENO $.
21859+
$}
21860+
21861+
${
21862+
moimiOLD.1 $e |- ( ph -> ps ) $.
21863+
$( Obsolete version of ~ moimi as of 9-May-2023. The at-most-one
21864+
quantifier reverses implication. (Contributed by NM, 15-Feb-2006.)
21865+
(Proof modification is discouraged.) (New usage is discouraged.) $)
21866+
moimiOLD $p |- ( E* x ps -> E* x ph ) $=
2185521867
( wi wmo moim mpg ) ABEBCFACFECABCGDH $.
2185621868
$}
2185721869

@@ -437024,16 +437036,15 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the
437024437036
"<IMG SRC='bbr.gif' WIDTH=9 HEIGHT=14 ALT='RR' TITLE='RR'></SUB>&#x200A;";
437025437037
althtmldef "-R" as " &minus;<SUB>&#8477;</SUB> ";
437026437038
latexdef "-R" as "-\mathbb{R}";
437027-
htmldef "PrjSp1" as
437028-
"<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' PrjSp' TITLE='PrjSp'>" +
437029-
"<SUB>1</SUB>";
437030-
althtmldef "PrjSp1" as "&#8473;<SUB>1</SUB>";
437031-
latexdef "PrjSp1" as "\mathbb{P}_1";
437032437039
htmldef "PrjSp" as
437033-
"<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' PrjSp' TITLE='PrjSp'>" +
437034-
"<SUB>&#x1D45B;</SUB>";
437035-
althtmldef "PrjSp" as "&#8473;<SUB>&#x1D45B;</SUB>";
437036-
latexdef "PrjSp" as "\mathbb{P}_n";
437040+
"<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' P' TITLE='P'>roj";
437041+
althtmldef "PrjSp" as "&#8473;&#x1D563;&#x1D560;&#x1D55B;";
437042+
latexdef "PrjSp" as "\operatorname{\mathbb{P}\mathrm{roj}}";
437043+
htmldef "PrjSpn" as
437044+
"<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' P' TITLE='P'>roj" +
437045+
"<SUB>n</SUB>";
437046+
althtmldef "PrjSpn" as "&#8473;&#x1D563;&#x1D560;&#x1D55B;<SUB>n</SUB>";
437047+
latexdef "PrjSpn" as "\operatorname{\mathbb{P}\mathrm{roj}_\mathrm{n}}";
437037437048
/* End of Steven Nguyen's mathbox */
437038437049

437039437050
/* Mathbox of Stefan O'Rear */
@@ -616217,156 +616228,156 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
616217616228
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
616218616229
$)
616219616230

616220-
$c PrjSp1 $.
616231+
$c PrjSp $.
616221616232

616222616233
$( Extend class notation with the projective space function. $)
616223-
cprjsp1 $a class PrjSp1 $.
616234+
cprjsp $a class PrjSp $.
616224616235

616225616236
${
616226616237
$d v b s x y l $.
616227616238
$( Define the projective space function. (Contributed by BJ and Steven
616228616239
Nguyen, 29-Apr-2023.) $)
616229-
df-prjsp1 $a |- PrjSp1 = ( v e. LVec |-> [_ ( Base ` v ) / b ]_ (
616240+
df-prjsp $a |- PrjSp = ( v e. LVec |-> [_ ( Base ` v ) / b ]_ (
616230616241
( b \ { ( 0g ` v ) } ) /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\
616231616242
E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) ) $.
616232616243
$}
616233616244

616234616245
${
616235616246
$d b l v x y V $. $d b v B $. $d b v .0. $. $d b v .x. $. $d b v K $.
616236-
prjsp1val.b $e |- B = ( Base ` V ) $.
616237-
prjsp1val.0 $e |- .0. = ( 0g ` V ) $.
616238-
prjsp1val.x $e |- .x. = ( .s ` V ) $.
616239-
prjsp1val.s $e |- S = ( Scalar ` V ) $.
616240-
prjsp1val.k $e |- K = ( Base ` S ) $.
616247+
prjspval.b $e |- B = ( Base ` V ) $.
616248+
prjspval.0 $e |- .0. = ( 0g ` V ) $.
616249+
prjspval.x $e |- .x. = ( .s ` V ) $.
616250+
prjspval.s $e |- S = ( Scalar ` V ) $.
616251+
prjspval.k $e |- K = ( Base ` S ) $.
616241616252
$( Value of the projective space function. (Contributed by Steven Nguyen,
616242616253
29-Apr-2023.) $)
616243-
prjsp1val $p |- ( V e. LVec -> ( PrjSp1 ` V ) = ( ( B \ { .0. } ) /.
616254+
prjspval $p |- ( V e. LVec -> ( PrjSp ` V ) = ( ( B \ { .0. } ) /.
616244616255
{ <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) }
616245616256
) ) $=
616246616257
( vb cv cbs cfv wa wceq vv c0g csn cdif wel cvsca csca wrex copab cqs csb
616247-
wcel clvec cprjsp1 cvv fvexd fveq2 syl6eqr eqeq2d biimpd imp sneqd adantr
616248-
co difeq12d wb imdistani eleq2 anbi12d oveqd rexeqbidv bi2anan9r opabbidv
616249-
fveq2d syl qseq12d csbied df-prjsp1 fvexi difexi qsex fvmpt ) UAGOUAPZQRZ
616250-
OPZWCUBRZUCZUDZAOUEZBOUEZSZAPZIPZBPZWCUFRZVDZTZIWCUGRZQRZUHZSZABUIZUJZUKC
616251-
HUCZUDZWLCULZWNCULZSZWLWMWNEVDZTZIFUHZSZABUIZUJZUMUNWCGTZOWDXCXNUOXOWCQUP
616252-
XOWEWDTZSZWHXEXBXMXQWECWGXDXOXPWECTZXOXPXRXOWDCWEXOWDGQRCWCGQUQJURUSUTZVA
616253-
XOWGXDTXPXOWFHXOWFGUBRHWCGUBUQKURVBVCVEXQXAXLABXQXOXRSXAXLVFXOXPXRXSVGXRW
616254-
KXHXOWTXKXRWIXFWJXGWECWLVHWECWNVHVIXOWQXJIWSFXOWSDQRFXOWRDQXOWRGUGRDWCGUG
616255-
UQMURVNNURXOWPXIWLXOWOEWMWNXOWOGUFREWCGUFUQLURVJUSVKVLVOVMVPVQABUAOIVRXEX
616256-
MCXDCGQJVSVTWAWB $.
616258+
co wcel clvec cprjsp cvv fvexd fveq2 syl6eqr eqeq2d biimpd sneqd difeq12d
616259+
imp adantr wb imdistani eleq2 anbi12d fveq2d rexeqbidv bi2anan9r opabbidv
616260+
oveqd syl qseq12d csbied df-prjsp fvexi difexi qsex fvmpt ) UAGOUAPZQRZOP
616261+
ZWCUBRZUCZUDZAOUEZBOUEZSZAPZIPZBPZWCUFRZULZTZIWCUGRZQRZUHZSZABUIZUJZUKCHU
616262+
CZUDZWLCUMZWNCUMZSZWLWMWNEULZTZIFUHZSZABUIZUJZUNUOWCGTZOWDXCXNUPXOWCQUQXO
616263+
WEWDTZSZWHXEXBXMXQWECWGXDXOXPWECTZXOXPXRXOWDCWEXOWDGQRCWCGQURJUSUTVAZVDXO
616264+
WGXDTXPXOWFHXOWFGUBRHWCGUBURKUSVBVEVCXQXAXLABXQXOXRSXAXLVFXOXPXRXSVGXRWKX
616265+
HXOWTXKXRWIXFWJXGWECWLVHWECWNVHVIXOWQXJIWSFXOWSDQRFXOWRDQXOWRGUGRDWCGUGUR
616266+
MUSVJNUSXOWPXIWLXOWOEWMWNXOWOGUFREWCGUFURLUSVNUTVKVLVOVMVPVQABUAOIVRXEXMC
616267+
XDCGQJVSVTWAWB $.
616257616268
$}
616258616269

616259616270
${
616260616271
$d B x y $. $d X x y l m $. $d Y x y l m $. $d K x y l m $.
616261616272
$d .x. x y l m $.
616262-
prjsp1rel.1 $e |- .~ = { <. x , y >. |
616273+
prjsprel.1 $e |- .~ = { <. x , y >. |
616263616274
( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } $.
616264-
$( Utility theorem regarding the relation used in ` PrjSp1 ` .
616265-
(Contributed by Steven Nguyen, 29-Apr-2023.) $)
616266-
prjsp1rel $p |- ( X .~ Y <->
616275+
$( Utility theorem regarding the relation used in ` PrjSp ` . (Contributed
616276+
by Steven Nguyen, 29-Apr-2023.) $)
616277+
prjsprel $p |- ( X .~ Y <->
616267616278
( ( X e. B /\ Y e. B ) /\ E. m e. K X = ( m .x. Y ) ) ) $=
616268616279
( cv co wceq wrex wa weq simpll simpr simplr oveq12d eqeq12d cbvrexdva
616269616280
brabg2a ) ALZJLZBLZEMZNZJGOHFLZIEMZNZFGOABHICCDUEHNZUGINZPZUIULJFGUOJFQZP
616270616281
ZUEHUHUKUMUNUPRUQUFUJUGIEUOUPSUMUNUPTUAUBUCKUD $.
616271616282

616272616283
$d Z l m n o x y $. $d V m n o $. $d X n o $. $d Y n o $. $d K n o $.
616273616284
$d .x. n o $. $d S o $. $d .~ m n o $.
616274-
prjsp1ertr.b $e |- B = ( Base ` V ) $.
616275-
prjsp1ertr.s $e |- S = ( Scalar ` V ) $.
616276-
prjsp1ertr.x $e |- .x. = ( .s ` V ) $.
616277-
prjsp1ertr.k $e |- K = ( Base ` S ) $.
616278-
$( The relation in ` PrjSp1 ` is transitive. (Contributed by Steven
616279-
Nguyen, 1-May-2023.) $)
616280-
prjsp1ertr $p |- ( ( V e. LVec /\ ( X .~ Y /\ Y .~ Z ) ) -> X .~ Z ) $=
616281-
( wcel wa co vm vn vo clvec wbr cv wceq prjsp1rel simprbi ad2antrl adantl
616282-
wrex ad3antlr simplrl ad3antrrr simpll sylbi syl simplrr simplr cmulr cfv
616283-
crg clmod lveclmod lmodring ad5antr simp-4r eqid ringcl syl3anc wb eqeq2d
616284-
oveq1 simpr oveq2d simpllr lmodvsass syl13anc 3eqtr4d rspcedvd syl21anbrc
616285-
ex rexlimdva mpd ) HUDRZIJDUEZJKDUEZSZSZIUAUFZJFTZUGZUAGULZIKDUEZWGWNWFWH
616286-
WGICRZJCRZSZWNABCDFUAGIJLMUHZUIUJWJWMWOUAGWJWKGRZSZWMWOXAWMSZJUBUFZKFTZUG
616287-
ZUBGULZWOWIXFWFWTWMWHXFWGWHWQKCRZSZXFABCDFUBGJKLMUHZUIUKUMXBXEWOUBGXBXCGR
616288-
ZSZXEWOXKXESZWPXGIUCUFZKFTZUGZUCGULWOXLWGWPXAWGWMXJXEWFWGWHWTUNUOWGWRWNSW
616289-
PWSWPWQWNUPUQURXLWHXGXAWHWMXJXEWFWGWHWTUSUOWHXHXFSXGXIWQXGXFUTUQURZXLXOIW
616290-
KXCEVAVBZTZKFTZUGZUCXRGXLEVCRZWTXJXRGRWFYAWIWTWMXJXEWFHVDRZYAHVEZEHOVFURV
616291-
GWJWTWMXJXEVHZXBXJXEUTZGEXQWKXCQXQVIZVJVKXMXRUGZXOXTVLXLYGXNXSIXMXRKFVNVM
616292-
UKXLWLWKXDFTZIXSXLJXDWKFXKXEVOVPXAWMXJXEVQXLYBWTXJXGXSYHUGWFYBWIWTWMXJXEY
616293-
CVGYDYEXPWKXCFXQEGCHKNOPQYFVRVSVTWAABCDFUCGIKLMUHWBWCWDWEWCWDWE $.
616285+
prjspertr.b $e |- B = ( Base ` V ) $.
616286+
prjspertr.s $e |- S = ( Scalar ` V ) $.
616287+
prjspertr.x $e |- .x. = ( .s ` V ) $.
616288+
prjspertr.k $e |- K = ( Base ` S ) $.
616289+
$( The relation in ` PrjSp ` is transitive. (Contributed by Steven Nguyen,
616290+
1-May-2023.) $)
616291+
prjspertr $p |- ( ( V e. LVec /\ ( X .~ Y /\ Y .~ Z ) ) -> X .~ Z ) $=
616292+
( wcel wa co vm vn vo clvec cv wceq wrex prjsprel simprbi ad2antrl adantl
616293+
wbr simplrl ad3antrrr simpll sylbi syl simplrr simplr cmulr cfv crg clmod
616294+
ad3antlr lveclmod lmodring ad5antr simp-4r ringcl syl3anc wb oveq1 eqeq2d
616295+
eqid simpr oveq2d simpllr lmodvsass syl13anc 3eqtr4d syl21anbrc rexlimdva
616296+
rspcedvd ex mpd ) HUDRZIJDULZJKDULZSZSZIUAUEZJFTZUFZUAGUGZIKDULZWGWNWFWHW
616297+
GICRZJCRZSZWNABCDFUAGIJLMUHZUIUJWJWMWOUAGWJWKGRZSZWMWOXAWMSZJUBUEZKFTZUFZ
616298+
UBGUGZWOWIXFWFWTWMWHXFWGWHWQKCRZSZXFABCDFUBGJKLMUHZUIUKVDXBXEWOUBGXBXCGRZ
616299+
SZXEWOXKXESZWPXGIUCUEZKFTZUFZUCGUGWOXLWGWPXAWGWMXJXEWFWGWHWTUMUNWGWRWNSWP
616300+
WSWPWQWNUOUPUQXLWHXGXAWHWMXJXEWFWGWHWTURUNWHXHXFSXGXIWQXGXFUSUPUQZXLXOIWK
616301+
XCEUTVAZTZKFTZUFZUCXRGXLEVBRZWTXJXRGRWFYAWIWTWMXJXEWFHVCRZYAHVEZEHOVFUQVG
616302+
WJWTWMXJXEVHZXBXJXEUSZGEXQWKXCQXQVNZVIVJXMXRUFZXOXTVKXLYGXNXSIXMXRKFVLVMU
616303+
KXLWLWKXDFTZIXSXLJXDWKFXKXEVOVPXAWMXJXEVQXLYBWTXJXGXSYHUFWFYBWIWTWMXJXEYC
616304+
VGYDYEXPWKXCFXQEGCHKNOPQYFVRVSVTWCABCDFUCGIKLMUHWAWDWBWEWDWBWE $.
616294616305

616295616306
$d B m $. $d S m $.
616296-
$( The relation in ` PrjSp1 ` is reflexive. (Contributed by Steven Nguyen,
616307+
$( The relation in ` PrjSp ` is reflexive. (Contributed by Steven Nguyen,
616297616308
30-Apr-2023.) $)
616298-
prjsp1erref $p |- ( V e. LVec -> ( X e. B <-> X .~ X ) ) $=
616309+
prjsperref $p |- ( V e. LVec -> ( X e. B <-> X .~ X ) ) $=
616299616310
( vm wcel wa co wceq clvec cv wrex wbr cur cfv clmod lveclmod adantr eqid
616300616311
lmod1cl syl simpr oveq1d eqeq2d lmodvs1 eqcomd rspcedvd ex pm4.71d pm4.24
616301-
sylan anbi1i syl6bb prjsp1rel syl6bbr ) HUAQZICQZVHVHRZIPUBZIFSZTZPGUCZRZ
616302-
IIDUDVGVHVHVMRVNVGVHVMVGVHVMVGVHRZVLIEUEUFZIFSZTPVPGVOHUGQZVPGQVGVRVHHUHZ
616303-
UIVPEGHMOVPUJZUKULVOVJVPTZRZVKVQIWBVJVPIFVOWAUMUNUOVOVQIVGVRVHVQITVSFVPEC
616304-
HILMNVTUPVBUQURUSUTVHVIVMVHVAVCVDABCDFPGIIJKVEVF $.
616312+
sylan anbi1i syl6bb prjsprel syl6bbr ) HUAQZICQZVHVHRZIPUBZIFSZTZPGUCZRZI
616313+
IDUDVGVHVHVMRVNVGVHVMVGVHVMVGVHRZVLIEUEUFZIFSZTPVPGVOHUGQZVPGQVGVRVHHUHZU
616314+
IVPEGHMOVPUJZUKULVOVJVPTZRZVKVQIWBVJVPIFVOWAUMUNUOVOVQIVGVRVHVQITVSFVPECH
616315+
ILMNVTUPVBUQURUSUTVHVIVMVHVAVCVDABCDFPGIIJKVEVF $.
616305616316

616306616317
$d .x. n $. $d K n $. $d Y n $. $d .0. n $. $d .0. m $. $d B n $.
616307616318
$d S n $.
616308-
prjsp1ersym.1 $e |- .0. = ( 0g ` V ) $.
616309-
$( The relation in ` PrjSp1 ` is symmetric. (Contributed by Steven Nguyen,
616319+
prjspersym.1 $e |- .0. = ( 0g ` V ) $.
616320+
$( The relation in ` PrjSp ` is symmetric. (Contributed by Steven Nguyen,
616310616321
1-May-2023.) $)
616311-
prjsp1ersym $p |- ( ( V e. LVec /\ X .~ Y /\ X =/= .0. ) -> Y .~ X ) $=
616312-
( wcel wceq vm vn clvec wbr wne w3a cv co wa wrex prjsp1rel pm3.22 adantr
616313-
simpll2 sylbi syl cinvr cfv cdr c0g simpll1 lvecdrng simplr simpll3 simpr
616314-
neneqd oveq1d clmod lveclmod simpld eqid lmod0vs syl2anc mtand drnginvrcl
616315-
3eqtrd neqned syl3anc wb oveq1 eqeq2d adantl csn wn eldifd simprd lvecinv
616316-
nelsn mpbid rspcedvd sylanbrc 3ad2ant2 r19.29a ) HUCSZIJDUDZIKUEZUFZIUAUG
616317-
ZJFUHZTZJIDUDZUAGWQWRGSZUIZWTUIZJCSZICSZUIZJUBUGZIFUHZTZUBGUJXAXDWOXGWNWO
616318-
WPXBWTUNWOXFXEUIZWTUAGUJZUIZXGABCDFUAGIJLMUKZXKXGXLXFXEULUMUOUPZXDXJJWREU
616319-
QURZURZIFUHZTZUBXQGXDEUSSZXBWREUTURZUEZXQGSXDWNXTWNWOWPXBWTVAZEHOVBUPWQXB
616320-
WTVCZXDWRYAXDWRYATZIKTXDIKWNWOWPXBWTVDVFXDYEUIZIWSYAJFUHZKXCWTYEVCYFWRYAJ
616321-
FXDYEVEVGYFHVHSZXEYGKTYFWNYHXDWNYEYCUMHVIUPXDXEYEXDXEXFXOVJZUMFEYACHJKNOP
616322-
YAVKZRVLVMVPVNVQZGEXPWRYAQYJXPVKZVOVRXHXQTZXJXSVSXDYMXIXRJXHXQIFVTWAWBXDW
616323-
TXSXCWTVEXDWRFEXPGCHIJYANPOQYJYLYCXDWRGYAWCZYDXDYBWRYNSWDYKWRYAWHUPWEXDXE
616324-
XFXOWFYIWGWIWJABCDFUBGJILMUKWKWOWNXLWPWOXMXLXNXKXLVEUOWLWM $.
616322+
prjspersym $p |- ( ( V e. LVec /\ X .~ Y /\ X =/= .0. ) -> Y .~ X ) $=
616323+
( wcel wceq vm vn clvec wbr wne w3a cv co wa wrex simpll2 prjsprel pm3.22
616324+
adantr sylbi syl cinvr cfv cdr c0g simpll1 lvecdrng simplr simpll3 neneqd
616325+
simpr oveq1d clmod lveclmod simpld eqid lmod0vs syl2anc 3eqtrd drnginvrcl
616326+
mtand neqned syl3anc wb oveq1 eqeq2d adantl csn nelsn eldifd simprd mpbid
616327+
wn lvecinv rspcedvd sylanbrc 3ad2ant2 r19.29a ) HUCSZIJDUDZIKUEZUFZIUAUGZ
616328+
JFUHZTZJIDUDZUAGWQWRGSZUIZWTUIZJCSZICSZUIZJUBUGZIFUHZTZUBGUJXAXDWOXGWNWOW
616329+
PXBWTUKWOXFXEUIZWTUAGUJZUIZXGABCDFUAGIJLMULZXKXGXLXFXEUMUNUOUPZXDXJJWREUQ
616330+
URZURZIFUHZTZUBXQGXDEUSSZXBWREUTURZUEZXQGSXDWNXTWNWOWPXBWTVAZEHOVBUPWQXBW
616331+
TVCZXDWRYAXDWRYATZIKTXDIKWNWOWPXBWTVDVEXDYEUIZIWSYAJFUHZKXCWTYEVCYFWRYAJF
616332+
XDYEVFVGYFHVHSZXEYGKTYFWNYHXDWNYEYCUNHVIUPXDXEYEXDXEXFXOVJZUNFEYACHJKNOPY
616333+
AVKZRVLVMVNVPVQZGEXPWRYAQYJXPVKZVOVRXHXQTZXJXSVSXDYMXIXRJXHXQIFVTWAWBXDWT
616334+
XSXCWTVFXDWRFEXPGCHIJYANPOQYJYLYCXDWRGYAWCZYDXDYBWRYNSWHYKWRYAWDUPWEXDXEX
616335+
FXOWFYIWIWGWJABCDFUBGJILMULWKWOWNXLWPWOXMXLXNXKXLVFUOWLWM $.
616325616336

616326616337
$d V a b c $. $d .0. a b c $. $d B a b c $. $d .~ a b c $. $d R c $.
616327616338
$d a b c l x y $.
616328-
$( The relation in ` PrjSp1 ` is an equivalence relation. (Contributed by
616339+
$( The relation in ` PrjSp ` is an equivalence relation. (Contributed by
616329616340
Steven Nguyen, 1-May-2023.) $)
616330-
prjsp1er $p |- ( V e. LVec ->
616341+
prjsper $p |- ( V e. LVec ->
616331616342
( .~ i^i ( ( B \ { .0. } ) X. ( B \ { .0. } ) ) ) Er ( B \ { .0. } ) ) $=
616332616343
( wcel wbr wa brinxp2 va vb vc clvec csn cdif cxp cin wrel relinxp a1i cv
616333-
simprl ancomd simpl simprr eldifsni simpl2im prjsp1ersym syl3anc sylanbrc
616334-
sylan2b anbi12i simp-4l ancoms simprlr anasss simprrr prjsp1ertr syl12anc
616335-
syl21anbrc eldifi prjsp1erref syl5ib pm4.71d anidm anbi1i syl6bbr iserd
616336-
wne ) HUDQZUAUBUCCIUEZUFZDWCWCUGUHZWDUIWAWCWCDUJUKUAULZUBULZWDRZWAWEWCQZW
616337-
FWCQZSZWEWFDRZSZWFWEWDRZWCWCWEWFDTZWAWLSZWIWHSWFWEDRZWMWOWHWIWAWJWKUMUNZW
616338-
OWAWKWEIVTZWPWAWLUOWAWJWKUPWOWIWHWRWQWECIUQURABCDEFGHWEWFIJKLMNOPUSUTWCWC
616339-
WFWEDTVAVBWGWFUCULZWDRZSWAWLWIWSWCQZSZWFWSDRZSZSZWEWSWDRZWGWLWTXDWNWCWCWF
616340-
WSDTVCWAXESZWHXAWEWSDRZXFXEWAWHWHWIWKXDWAVDVEWAWLXDXAWOWIXAXCVFVGXGWAWKXC
616341-
XHWAXEUOWAWJWKXDVFWAWLXBXCVHABCDEFGHWEWFWSJKLMNOVIVJWCWCWEWSDTVKVBWAWHWHW
616342-
HSZWEWEDRZSZWEWEWDRWAWHWHXJSXKWAWHXJWHWECQWAXJWECWBVLABCDEFGHWEJKLMNOVMVN
616343-
VOXIWHXJWHVPVQVRWCWCWEWEDTVRVS $.
616344+
simprl ancomd wne simpl simprr eldifsni simpl2im syl3anc sylanbrc sylan2b
616345+
prjspersym anbi12i simp-4l ancoms simprlr anasss simprrr prjspertr eldifi
616346+
syl12anc syl21anbrc prjsperref syl5ib pm4.71d anidm anbi1i syl6bbr iserd
616347+
) HUDQZUAUBUCCIUEZUFZDWCWCUGUHZWDUIWAWCWCDUJUKUAULZUBULZWDRZWAWEWCQZWFWCQ
616348+
ZSZWEWFDRZSZWFWEWDRZWCWCWEWFDTZWAWLSZWIWHSWFWEDRZWMWOWHWIWAWJWKUMUNZWOWAW
616349+
KWEIUOZWPWAWLUPWAWJWKUQWOWIWHWRWQWECIURUSABCDEFGHWEWFIJKLMNOPVCUTWCWCWFWE
616350+
DTVAVBWGWFUCULZWDRZSWAWLWIWSWCQZSZWFWSDRZSZSZWEWSWDRZWGWLWTXDWNWCWCWFWSDT
616351+
VDWAXESZWHXAWEWSDRZXFXEWAWHWHWIWKXDWAVEVFWAWLXDXAWOWIXAXCVGVHXGWAWKXCXHWA
616352+
XEUPWAWJWKXDVGWAWLXBXCVIABCDEFGHWEWFWSJKLMNOVJVLWCWCWEWSDTVMVBWAWHWHWHSZW
616353+
EWEDRZSZWEWEWDRWAWHWHXJSXKWAWHXJWHWECQWAXJWECWBVKABCDEFGHWEJKLMNOVNVOVPXI
616354+
WHXJWHVQVRVSWCWCWEWEDTVSVT $.
616344616355
$}
616345616356

616346-
$c PrjSp $.
616357+
$c PrjSpn $.
616347616358

616348616359
$( Extend class notation with the n-dimensional projective space function. $)
616349-
cprjsp $a class PrjSp $.
616360+
cprjspn $a class PrjSpn $.
616350616361

616351616362
${
616352616363
$d n k $.
616353616364
$( Define the n-dimensional projective space function. A projective space
616354616365
of dimension 1 is a projective line, and a projective space of dimension
616355616366
2 is a projective plane. Compare ~ df-ehl . (Contributed by BJ and
616356616367
Steven Nguyen, 29-Apr-2023.) $)
616357-
df-prjsp $a |- PrjSp = ( n e. NN0 , k e. DivRing |->
616358-
( PrjSp1 ` ( k freeLMod ( 1 ... n ) ) ) ) $.
616368+
df-prjspn $a |- PrjSpn = ( n e. NN0 , k e. DivRing |->
616369+
( PrjSp ` ( k freeLMod ( 1 ... n ) ) ) ) $.
616359616370
$}
616360616371

616361616372
${
616362616373
$d n k N $. $d n k K $.
616363616374
$( Value of the n-dimensional projective space function. (Contributed by
616364616375
Steven Nguyen, 1-May-2023.) $)
616365-
prjspval $p |- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSp K ) =
616366-
( PrjSp1 ` ( K freeLMod ( 1 ... N ) ) ) ) $=
616367-
( vn vk cn0 cdr cv c1 cfz co cfrlm cprjsp1 cfv cprjsp oveq2 oveq2d fveq2d
616368-
wceq fvoveq1 df-prjsp fvex ovmpt2 ) CDBAEFDGZHCGZIJZKJZLMAHBIJZKJZLMNUCUG
616369-
KJZLMUDBRZUFUILUJUEUGUCKUDBHIOPQUCAUGLKSDCTUHLUAUB $.
616376+
prjspnval $p |- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) =
616377+
( PrjSp ` ( K freeLMod ( 1 ... N ) ) ) ) $=
616378+
( vn vk cn0 cdr cv c1 cfz co cfrlm cprjsp cfv cprjspn oveq2 oveq2d fveq2d
616379+
wceq fvoveq1 df-prjspn fvex ovmpt2 ) CDBAEFDGZHCGZIJZKJZLMAHBIJZKJZLMNUCU
616380+
GKJZLMUDBRZUFUILUJUEUGUCKUDBHIOPQUCAUGLKSDCTUHLUAUB $.
616370616381
$}
616371616382

616372616383
${

0 commit comments

Comments
 (0)