@@ -21848,10 +21848,22 @@ proposition with a distinct variable (closed form of ~ nfsb4 ).
21848
21848
$}
21849
21849
21850
21850
${
21851
+ $d x y $. $d y ph $. $d y ps $.
21851
21852
moimi.1 $e |- ( ph -> ps ) $.
21852
21853
$( The at-most-one quantifier reverses implication. (Contributed by NM,
21853
- 15-Feb-2006.) $)
21854
+ 15-Feb-2006.) Remove use of ~ ax-5 . (Revised by Steven Nguyen,
21855
+ 9-May-2023.) $)
21854
21856
moimi $p |- ( E* x ps -> E* x ph ) $=
21857
+ ( vy weq wi wal wex wmo imim1i alimi eximi df-mo 3imtr4i ) BCEFZGZCHZEIAP
21858
+ GZCHZEIBCJACJRTEQSCABPDKLMBCENACENO $.
21859
+ $}
21860
+
21861
+ ${
21862
+ moimiOLD.1 $e |- ( ph -> ps ) $.
21863
+ $( Obsolete version of ~ moimi as of 9-May-2023. The at-most-one
21864
+ quantifier reverses implication. (Contributed by NM, 15-Feb-2006.)
21865
+ (Proof modification is discouraged.) (New usage is discouraged.) $)
21866
+ moimiOLD $p |- ( E* x ps -> E* x ph ) $=
21855
21867
( wi wmo moim mpg ) ABEBCFACFECABCGDH $.
21856
21868
$}
21857
21869
@@ -437024,16 +437036,15 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the
437024
437036
"<IMG SRC='bbr.gif' WIDTH=9 HEIGHT=14 ALT='RR' TITLE='RR'></SUB> ";
437025
437037
althtmldef "-R" as " −<SUB>ℝ</SUB> ";
437026
437038
latexdef "-R" as "-\mathbb{R}";
437027
- htmldef "PrjSp1" as
437028
- "<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' PrjSp' TITLE='PrjSp'>" +
437029
- "<SUB>1</SUB>";
437030
- althtmldef "PrjSp1" as "ℙ<SUB>1</SUB>";
437031
- latexdef "PrjSp1" as "\mathbb{P}_1";
437032
437039
htmldef "PrjSp" as
437033
- "<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' PrjSp' TITLE='PrjSp'>" +
437034
- "<SUB>𝑛</SUB>";
437035
- althtmldef "PrjSp" as "ℙ<SUB>𝑛</SUB>";
437036
- latexdef "PrjSp" as "\mathbb{P}_n";
437040
+ "<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' P' TITLE='P'>roj";
437041
+ althtmldef "PrjSp" as "ℙ𝕣𝕠𝕛";
437042
+ latexdef "PrjSp" as "\operatorname{\mathbb{P}\mathrm{roj}}";
437043
+ htmldef "PrjSpn" as
437044
+ "<IMG SRC='bbp.gif' WIDTH=11 HEIGHT=19 ALT=' P' TITLE='P'>roj" +
437045
+ "<SUB>n</SUB>";
437046
+ althtmldef "PrjSpn" as "ℙ𝕣𝕠𝕛<SUB>n</SUB>";
437047
+ latexdef "PrjSpn" as "\operatorname{\mathbb{P}\mathrm{roj}_\mathrm{n}}";
437037
437048
/* End of Steven Nguyen's mathbox */
437038
437049
437039
437050
/* Mathbox of Stefan O'Rear */
@@ -616217,156 +616228,156 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
616217
616228
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
616218
616229
$)
616219
616230
616220
- $c PrjSp1 $.
616231
+ $c PrjSp $.
616221
616232
616222
616233
$( Extend class notation with the projective space function. $)
616223
- cprjsp1 $a class PrjSp1 $.
616234
+ cprjsp $a class PrjSp $.
616224
616235
616225
616236
${
616226
616237
$d v b s x y l $.
616227
616238
$( Define the projective space function. (Contributed by BJ and Steven
616228
616239
Nguyen, 29-Apr-2023.) $)
616229
- df-prjsp1 $a |- PrjSp1 = ( v e. LVec |-> [_ ( Base ` v ) / b ]_ (
616240
+ df-prjsp $a |- PrjSp = ( v e. LVec |-> [_ ( Base ` v ) / b ]_ (
616230
616241
( b \ { ( 0g ` v ) } ) /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\
616231
616242
E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) ) $.
616232
616243
$}
616233
616244
616234
616245
${
616235
616246
$d b l v x y V $. $d b v B $. $d b v .0. $. $d b v .x. $. $d b v K $.
616236
- prjsp1val .b $e |- B = ( Base ` V ) $.
616237
- prjsp1val .0 $e |- .0. = ( 0g ` V ) $.
616238
- prjsp1val .x $e |- .x. = ( .s ` V ) $.
616239
- prjsp1val .s $e |- S = ( Scalar ` V ) $.
616240
- prjsp1val .k $e |- K = ( Base ` S ) $.
616247
+ prjspval .b $e |- B = ( Base ` V ) $.
616248
+ prjspval .0 $e |- .0. = ( 0g ` V ) $.
616249
+ prjspval .x $e |- .x. = ( .s ` V ) $.
616250
+ prjspval .s $e |- S = ( Scalar ` V ) $.
616251
+ prjspval .k $e |- K = ( Base ` S ) $.
616241
616252
$( Value of the projective space function. (Contributed by Steven Nguyen,
616242
616253
29-Apr-2023.) $)
616243
- prjsp1val $p |- ( V e. LVec -> ( PrjSp1 ` V ) = ( ( B \ { .0. } ) /.
616254
+ prjspval $p |- ( V e. LVec -> ( PrjSp ` V ) = ( ( B \ { .0. } ) /.
616244
616255
{ <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) }
616245
616256
) ) $=
616246
616257
( vb cv cbs cfv wa wceq vv c0g csn cdif wel cvsca csca wrex copab cqs csb
616247
- wcel clvec cprjsp1 cvv fvexd fveq2 syl6eqr eqeq2d biimpd imp sneqd adantr
616248
- co difeq12d wb imdistani eleq2 anbi12d oveqd rexeqbidv bi2anan9r opabbidv
616249
- fveq2d syl qseq12d csbied df-prjsp1 fvexi difexi qsex fvmpt ) UAGOUAPZQRZ
616250
- OPZWCUBRZUCZUDZAOUEZBOUEZSZAPZIPZBPZWCUFRZVDZTZIWCUGRZQRZUHZSZABUIZUJZUKC
616251
- HUCZUDZWLCULZWNCULZSZWLWMWNEVDZTZIFUHZSZABUIZUJZUMUNWCGTZOWDXCXNUOXOWCQUP
616252
- XOWEWDTZSZWHXEXBXMXQWECWGXDXOXPWECTZXOXPXRXOWDCWEXOWDGQRCWCGQUQJURUSUTZVA
616253
- XOWGXDTXPXOWFHXOWFGUBRHWCGUBUQKURVBVCVEXQXAXLABXQXOXRSXAXLVFXOXPXRXSVGXRW
616254
- KXHXOWTXKXRWIXFWJXGWECWLVHWECWNVHVIXOWQXJIWSFXOWSDQRFXOWRDQXOWRGUGRDWCGUG
616255
- UQMURVNNURXOWPXIWLXOWOEWMWNXOWOGUFREWCGUFUQLURVJUSVKVLVOVMVPVQABUAOIVRXEX
616256
- MCXDCGQJVSVTWAWB $.
616258
+ co wcel clvec cprjsp cvv fvexd fveq2 syl6eqr eqeq2d biimpd sneqd difeq12d
616259
+ imp adantr wb imdistani eleq2 anbi12d fveq2d rexeqbidv bi2anan9r opabbidv
616260
+ oveqd syl qseq12d csbied df-prjsp fvexi difexi qsex fvmpt ) UAGOUAPZQRZOP
616261
+ ZWCUBRZUCZUDZAOUEZBOUEZSZAPZIPZBPZWCUFRZULZTZIWCUGRZQRZUHZSZABUIZUJZUKCHU
616262
+ CZUDZWLCUMZWNCUMZSZWLWMWNEULZTZIFUHZSZABUIZUJZUNUOWCGTZOWDXCXNUPXOWCQUQXO
616263
+ WEWDTZSZWHXEXBXMXQWECWGXDXOXPWECTZXOXPXRXOWDCWEXOWDGQRCWCGQURJUSUTVAZVDXO
616264
+ WGXDTXPXOWFHXOWFGUBRHWCGUBURKUSVBVEVCXQXAXLABXQXOXRSXAXLVFXOXPXRXSVGXRWKX
616265
+ HXOWTXKXRWIXFWJXGWECWLVHWECWNVHVIXOWQXJIWSFXOWSDQRFXOWRDQXOWRGUGRDWCGUGUR
616266
+ MUSVJNUSXOWPXIWLXOWOEWMWNXOWOGUFREWCGUFURLUSVNUTVKVLVOVMVPVQABUAOIVRXEXMC
616267
+ XDCGQJVSVTWAWB $.
616257
616268
$}
616258
616269
616259
616270
${
616260
616271
$d B x y $. $d X x y l m $. $d Y x y l m $. $d K x y l m $.
616261
616272
$d .x. x y l m $.
616262
- prjsp1rel .1 $e |- .~ = { <. x , y >. |
616273
+ prjsprel .1 $e |- .~ = { <. x , y >. |
616263
616274
( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } $.
616264
- $( Utility theorem regarding the relation used in ` PrjSp1 ` .
616265
- (Contributed by Steven Nguyen, 29-Apr-2023.) $)
616266
- prjsp1rel $p |- ( X .~ Y <->
616275
+ $( Utility theorem regarding the relation used in ` PrjSp ` . (Contributed
616276
+ by Steven Nguyen, 29-Apr-2023.) $)
616277
+ prjsprel $p |- ( X .~ Y <->
616267
616278
( ( X e. B /\ Y e. B ) /\ E. m e. K X = ( m .x. Y ) ) ) $=
616268
616279
( cv co wceq wrex wa weq simpll simpr simplr oveq12d eqeq12d cbvrexdva
616269
616280
brabg2a ) ALZJLZBLZEMZNZJGOHFLZIEMZNZFGOABHICCDUEHNZUGINZPZUIULJFGUOJFQZP
616270
616281
ZUEHUHUKUMUNUPRUQUFUJUGIEUOUPSUMUNUPTUAUBUCKUD $.
616271
616282
616272
616283
$d Z l m n o x y $. $d V m n o $. $d X n o $. $d Y n o $. $d K n o $.
616273
616284
$d .x. n o $. $d S o $. $d .~ m n o $.
616274
- prjsp1ertr .b $e |- B = ( Base ` V ) $.
616275
- prjsp1ertr .s $e |- S = ( Scalar ` V ) $.
616276
- prjsp1ertr .x $e |- .x. = ( .s ` V ) $.
616277
- prjsp1ertr .k $e |- K = ( Base ` S ) $.
616278
- $( The relation in ` PrjSp1 ` is transitive. (Contributed by Steven
616279
- Nguyen, 1-May-2023.) $)
616280
- prjsp1ertr $p |- ( ( V e. LVec /\ ( X .~ Y /\ Y .~ Z ) ) -> X .~ Z ) $=
616281
- ( wcel wa co vm vn vo clvec wbr cv wceq prjsp1rel simprbi ad2antrl adantl
616282
- wrex ad3antlr simplrl ad3antrrr simpll sylbi syl simplrr simplr cmulr cfv
616283
- crg clmod lveclmod lmodring ad5antr simp-4r eqid ringcl syl3anc wb eqeq2d
616284
- oveq1 simpr oveq2d simpllr lmodvsass syl13anc 3eqtr4d rspcedvd syl21anbrc
616285
- ex rexlimdva mpd ) HUDRZIJDUEZJKDUEZSZSZIUAUFZJFTZUGZUAGULZIKDUEZWGWNWFWH
616286
- WGICRZJCRZSZWNABCDFUAGIJLMUHZUIUJWJWMWOUAGWJWKGRZSZWMWOXAWMSZJUBUFZKFTZUG
616287
- ZUBGULZWOWIXFWFWTWMWHXFWGWHWQKCRZSZXFABCDFUBGJKLMUHZUIUKUMXBXEWOUBGXBXCGR
616288
- ZSZXEWOXKXESZWPXGIUCUFZKFTZUGZUCGULWOXLWGWPXAWGWMXJXEWFWGWHWTUNUOWGWRWNSW
616289
- PWSWPWQWNUPUQURXLWHXGXAWHWMXJXEWFWGWHWTUSUOWHXHXFSXGXIWQXGXFUTUQURZXLXOIW
616290
- KXCEVAVBZTZKFTZUGZUCXRGXLEVCRZWTXJXRGRWFYAWIWTWMXJXEWFHVDRZYAHVEZEHOVFURV
616291
- GWJWTWMXJXEVHZXBXJXEUTZGEXQWKXCQXQVIZVJVKXMXRUGZXOXTVLXLYGXNXSIXMXRKFVNVM
616292
- UKXLWLWKXDFTZIXSXLJXDWKFXKXEVOVPXAWMXJXEVQXLYBWTXJXGXSYHUGWFYBWIWTWMXJXEY
616293
- CVGYDYEXPWKXCFXQEGCHKNOPQYFVRVSVTWAABCDFUCGIKLMUHWBWCWDWEWCWDWE $.
616285
+ prjspertr .b $e |- B = ( Base ` V ) $.
616286
+ prjspertr .s $e |- S = ( Scalar ` V ) $.
616287
+ prjspertr .x $e |- .x. = ( .s ` V ) $.
616288
+ prjspertr .k $e |- K = ( Base ` S ) $.
616289
+ $( The relation in ` PrjSp ` is transitive. (Contributed by Steven Nguyen,
616290
+ 1-May-2023.) $)
616291
+ prjspertr $p |- ( ( V e. LVec /\ ( X .~ Y /\ Y .~ Z ) ) -> X .~ Z ) $=
616292
+ ( wcel wa co vm vn vo clvec cv wceq wrex prjsprel simprbi ad2antrl adantl
616293
+ wbr simplrl ad3antrrr simpll sylbi syl simplrr simplr cmulr cfv crg clmod
616294
+ ad3antlr lveclmod lmodring ad5antr simp-4r ringcl syl3anc wb oveq1 eqeq2d
616295
+ eqid simpr oveq2d simpllr lmodvsass syl13anc 3eqtr4d syl21anbrc rexlimdva
616296
+ rspcedvd ex mpd ) HUDRZIJDULZJKDULZSZSZIUAUEZJFTZUFZUAGUGZIKDULZWGWNWFWHW
616297
+ GICRZJCRZSZWNABCDFUAGIJLMUHZUIUJWJWMWOUAGWJWKGRZSZWMWOXAWMSZJUBUEZKFTZUFZ
616298
+ UBGUGZWOWIXFWFWTWMWHXFWGWHWQKCRZSZXFABCDFUBGJKLMUHZUIUKVDXBXEWOUBGXBXCGRZ
616299
+ SZXEWOXKXESZWPXGIUCUEZKFTZUFZUCGUGWOXLWGWPXAWGWMXJXEWFWGWHWTUMUNWGWRWNSWP
616300
+ WSWPWQWNUOUPUQXLWHXGXAWHWMXJXEWFWGWHWTURUNWHXHXFSXGXIWQXGXFUSUPUQZXLXOIWK
616301
+ XCEUTVAZTZKFTZUFZUCXRGXLEVBRZWTXJXRGRWFYAWIWTWMXJXEWFHVCRZYAHVEZEHOVFUQVG
616302
+ WJWTWMXJXEVHZXBXJXEUSZGEXQWKXCQXQVNZVIVJXMXRUFZXOXTVKXLYGXNXSIXMXRKFVLVMU
616303
+ KXLWLWKXDFTZIXSXLJXDWKFXKXEVOVPXAWMXJXEVQXLYBWTXJXGXSYHUFWFYBWIWTWMXJXEYC
616304
+ VGYDYEXPWKXCFXQEGCHKNOPQYFVRVSVTWCABCDFUCGIKLMUHWAWDWBWEWDWBWE $.
616294
616305
616295
616306
$d B m $. $d S m $.
616296
- $( The relation in ` PrjSp1 ` is reflexive. (Contributed by Steven Nguyen,
616307
+ $( The relation in ` PrjSp ` is reflexive. (Contributed by Steven Nguyen,
616297
616308
30-Apr-2023.) $)
616298
- prjsp1erref $p |- ( V e. LVec -> ( X e. B <-> X .~ X ) ) $=
616309
+ prjsperref $p |- ( V e. LVec -> ( X e. B <-> X .~ X ) ) $=
616299
616310
( vm wcel wa co wceq clvec cv wrex wbr cur cfv clmod lveclmod adantr eqid
616300
616311
lmod1cl syl simpr oveq1d eqeq2d lmodvs1 eqcomd rspcedvd ex pm4.71d pm4.24
616301
- sylan anbi1i syl6bb prjsp1rel syl6bbr ) HUAQZICQZVHVHRZIPUBZIFSZTZPGUCZRZ
616302
- IIDUDVGVHVHVMRVNVGVHVMVGVHVMVGVHRZVLIEUEUFZIFSZTPVPGVOHUGQZVPGQVGVRVHHUHZ
616303
- UIVPEGHMOVPUJZUKULVOVJVPTZRZVKVQIWBVJVPIFVOWAUMUNUOVOVQIVGVRVHVQITVSFVPEC
616304
- HILMNVTUPVBUQURUSUTVHVIVMVHVAVCVDABCDFPGIIJKVEVF $.
616312
+ sylan anbi1i syl6bb prjsprel syl6bbr ) HUAQZICQZVHVHRZIPUBZIFSZTZPGUCZRZI
616313
+ IDUDVGVHVHVMRVNVGVHVMVGVHVMVGVHRZVLIEUEUFZIFSZTPVPGVOHUGQZVPGQVGVRVHHUHZU
616314
+ IVPEGHMOVPUJZUKULVOVJVPTZRZVKVQIWBVJVPIFVOWAUMUNUOVOVQIVGVRVHVQITVSFVPECH
616315
+ ILMNVTUPVBUQURUSUTVHVIVMVHVAVCVDABCDFPGIIJKVEVF $.
616305
616316
616306
616317
$d .x. n $. $d K n $. $d Y n $. $d .0. n $. $d .0. m $. $d B n $.
616307
616318
$d S n $.
616308
- prjsp1ersym .1 $e |- .0. = ( 0g ` V ) $.
616309
- $( The relation in ` PrjSp1 ` is symmetric. (Contributed by Steven Nguyen,
616319
+ prjspersym .1 $e |- .0. = ( 0g ` V ) $.
616320
+ $( The relation in ` PrjSp ` is symmetric. (Contributed by Steven Nguyen,
616310
616321
1-May-2023.) $)
616311
- prjsp1ersym $p |- ( ( V e. LVec /\ X .~ Y /\ X =/= .0. ) -> Y .~ X ) $=
616312
- ( wcel wceq vm vn clvec wbr wne w3a cv co wa wrex prjsp1rel pm3.22 adantr
616313
- simpll2 sylbi syl cinvr cfv cdr c0g simpll1 lvecdrng simplr simpll3 simpr
616314
- neneqd oveq1d clmod lveclmod simpld eqid lmod0vs syl2anc mtand drnginvrcl
616315
- 3eqtrd neqned syl3anc wb oveq1 eqeq2d adantl csn wn eldifd simprd lvecinv
616316
- nelsn mpbid rspcedvd sylanbrc 3ad2ant2 r19.29a ) HUCSZIJDUDZIKUEZUFZIUAUG
616317
- ZJFUHZTZJIDUDZUAGWQWRGSZUIZWTUIZJCSZICSZUIZJUBUGZIFUHZTZUBGUJXAXDWOXGWNWO
616318
- WPXBWTUNWOXFXEUIZWTUAGUJZUIZXGABCDFUAGIJLMUKZXKXGXLXFXEULUMUOUPZXDXJJWREU
616319
- QURZURZIFUHZTZUBXQGXDEUSSZXBWREUTURZUEZXQGSXDWNXTWNWOWPXBWTVAZEHOVBUPWQXB
616320
- WTVCZXDWRYAXDWRYATZIKTXDIKWNWOWPXBWTVDVFXDYEUIZIWSYAJFUHZKXCWTYEVCYFWRYAJ
616321
- FXDYEVEVGYFHVHSZXEYGKTYFWNYHXDWNYEYCUMHVIUPXDXEYEXDXEXFXOVJZUMFEYACHJKNOP
616322
- YAVKZRVLVMVPVNVQZGEXPWRYAQYJXPVKZVOVRXHXQTZXJXSVSXDYMXIXRJXHXQIFVTWAWBXDW
616323
- TXSXCWTVEXDWRFEXPGCHIJYANPOQYJYLYCXDWRGYAWCZYDXDYBWRYNSWDYKWRYAWHUPWEXDXE
616324
- XFXOWFYIWGWIWJABCDFUBGJILMUKWKWOWNXLWPWOXMXLXNXKXLVEUOWLWM $.
616322
+ prjspersym $p |- ( ( V e. LVec /\ X .~ Y /\ X =/= .0. ) -> Y .~ X ) $=
616323
+ ( wcel wceq vm vn clvec wbr wne w3a cv co wa wrex simpll2 prjsprel pm3.22
616324
+ adantr sylbi syl cinvr cfv cdr c0g simpll1 lvecdrng simplr simpll3 neneqd
616325
+ simpr oveq1d clmod lveclmod simpld eqid lmod0vs syl2anc 3eqtrd drnginvrcl
616326
+ mtand neqned syl3anc wb oveq1 eqeq2d adantl csn nelsn eldifd simprd mpbid
616327
+ wn lvecinv rspcedvd sylanbrc 3ad2ant2 r19.29a ) HUCSZIJDUDZIKUEZUFZIUAUGZ
616328
+ JFUHZTZJIDUDZUAGWQWRGSZUIZWTUIZJCSZICSZUIZJUBUGZIFUHZTZUBGUJXAXDWOXGWNWOW
616329
+ PXBWTUKWOXFXEUIZWTUAGUJZUIZXGABCDFUAGIJLMULZXKXGXLXFXEUMUNUOUPZXDXJJWREUQ
616330
+ URZURZIFUHZTZUBXQGXDEUSSZXBWREUTURZUEZXQGSXDWNXTWNWOWPXBWTVAZEHOVBUPWQXBW
616331
+ TVCZXDWRYAXDWRYATZIKTXDIKWNWOWPXBWTVDVEXDYEUIZIWSYAJFUHZKXCWTYEVCYFWRYAJF
616332
+ XDYEVFVGYFHVHSZXEYGKTYFWNYHXDWNYEYCUNHVIUPXDXEYEXDXEXFXOVJZUNFEYACHJKNOPY
616333
+ AVKZRVLVMVNVPVQZGEXPWRYAQYJXPVKZVOVRXHXQTZXJXSVSXDYMXIXRJXHXQIFVTWAWBXDWT
616334
+ XSXCWTVFXDWRFEXPGCHIJYANPOQYJYLYCXDWRGYAWCZYDXDYBWRYNSWHYKWRYAWDUPWEXDXEX
616335
+ FXOWFYIWIWGWJABCDFUBGJILMULWKWOWNXLWPWOXMXLXNXKXLVFUOWLWM $.
616325
616336
616326
616337
$d V a b c $. $d .0. a b c $. $d B a b c $. $d .~ a b c $. $d R c $.
616327
616338
$d a b c l x y $.
616328
- $( The relation in ` PrjSp1 ` is an equivalence relation. (Contributed by
616339
+ $( The relation in ` PrjSp ` is an equivalence relation. (Contributed by
616329
616340
Steven Nguyen, 1-May-2023.) $)
616330
- prjsp1er $p |- ( V e. LVec ->
616341
+ prjsper $p |- ( V e. LVec ->
616331
616342
( .~ i^i ( ( B \ { .0. } ) X. ( B \ { .0. } ) ) ) Er ( B \ { .0. } ) ) $=
616332
616343
( wcel wbr wa brinxp2 va vb vc clvec csn cdif cxp cin wrel relinxp a1i cv
616333
- simprl ancomd simpl simprr eldifsni simpl2im prjsp1ersym syl3anc sylanbrc
616334
- sylan2b anbi12i simp-4l ancoms simprlr anasss simprrr prjsp1ertr syl12anc
616335
- syl21anbrc eldifi prjsp1erref syl5ib pm4.71d anidm anbi1i syl6bbr iserd
616336
- wne ) HUDQZUAUBUCCIUEZUFZDWCWCUGUHZWDUIWAWCWCDUJUKUAULZUBULZWDRZWAWEWCQZW
616337
- FWCQZSZWEWFDRZSZWFWEWDRZWCWCWEWFDTZWAWLSZWIWHSWFWEDRZWMWOWHWIWAWJWKUMUNZW
616338
- OWAWKWEIVTZWPWAWLUOWAWJWKUPWOWIWHWRWQWECIUQURABCDEFGHWEWFIJKLMNOPUSUTWCWC
616339
- WFWEDTVAVBWGWFUCULZWDRZSWAWLWIWSWCQZSZWFWSDRZSZSZWEWSWDRZWGWLWTXDWNWCWCWF
616340
- WSDTVCWAXESZWHXAWEWSDRZXFXEWAWHWHWIWKXDWAVDVEWAWLXDXAWOWIXAXCVFVGXGWAWKXC
616341
- XHWAXEUOWAWJWKXDVFWAWLXBXCVHABCDEFGHWEWFWSJKLMNOVIVJWCWCWEWSDTVKVBWAWHWHW
616342
- HSZWEWEDRZSZWEWEWDRWAWHWHXJSXKWAWHXJWHWECQWAXJWECWBVLABCDEFGHWEJKLMNOVMVN
616343
- VOXIWHXJWHVPVQVRWCWCWEWEDTVRVS $.
616344
+ simprl ancomd wne simpl simprr eldifsni simpl2im syl3anc sylanbrc sylan2b
616345
+ prjspersym anbi12i simp-4l ancoms simprlr anasss simprrr prjspertr eldifi
616346
+ syl12anc syl21anbrc prjsperref syl5ib pm4.71d anidm anbi1i syl6bbr iserd
616347
+ ) HUDQZUAUBUCCIUEZUFZDWCWCUGUHZWDUIWAWCWCDUJUKUAULZUBULZWDRZWAWEWCQZWFWCQ
616348
+ ZSZWEWFDRZSZWFWEWDRZWCWCWEWFDTZWAWLSZWIWHSWFWEDRZWMWOWHWIWAWJWKUMUNZWOWAW
616349
+ KWEIUOZWPWAWLUPWAWJWKUQWOWIWHWRWQWECIURUSABCDEFGHWEWFIJKLMNOPVCUTWCWCWFWE
616350
+ DTVAVBWGWFUCULZWDRZSWAWLWIWSWCQZSZWFWSDRZSZSZWEWSWDRZWGWLWTXDWNWCWCWFWSDT
616351
+ VDWAXESZWHXAWEWSDRZXFXEWAWHWHWIWKXDWAVEVFWAWLXDXAWOWIXAXCVGVHXGWAWKXCXHWA
616352
+ XEUPWAWJWKXDVGWAWLXBXCVIABCDEFGHWEWFWSJKLMNOVJVLWCWCWEWSDTVMVBWAWHWHWHSZW
616353
+ EWEDRZSZWEWEWDRWAWHWHXJSXKWAWHXJWHWECQWAXJWECWBVKABCDEFGHWEJKLMNOVNVOVPXI
616354
+ WHXJWHVQVRVSWCWCWEWEDTVSVT $.
616344
616355
$}
616345
616356
616346
- $c PrjSp $.
616357
+ $c PrjSpn $.
616347
616358
616348
616359
$( Extend class notation with the n-dimensional projective space function. $)
616349
- cprjsp $a class PrjSp $.
616360
+ cprjspn $a class PrjSpn $.
616350
616361
616351
616362
${
616352
616363
$d n k $.
616353
616364
$( Define the n-dimensional projective space function. A projective space
616354
616365
of dimension 1 is a projective line, and a projective space of dimension
616355
616366
2 is a projective plane. Compare ~ df-ehl . (Contributed by BJ and
616356
616367
Steven Nguyen, 29-Apr-2023.) $)
616357
- df-prjsp $a |- PrjSp = ( n e. NN0 , k e. DivRing |->
616358
- ( PrjSp1 ` ( k freeLMod ( 1 ... n ) ) ) ) $.
616368
+ df-prjspn $a |- PrjSpn = ( n e. NN0 , k e. DivRing |->
616369
+ ( PrjSp ` ( k freeLMod ( 1 ... n ) ) ) ) $.
616359
616370
$}
616360
616371
616361
616372
${
616362
616373
$d n k N $. $d n k K $.
616363
616374
$( Value of the n-dimensional projective space function. (Contributed by
616364
616375
Steven Nguyen, 1-May-2023.) $)
616365
- prjspval $p |- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSp K ) =
616366
- ( PrjSp1 ` ( K freeLMod ( 1 ... N ) ) ) ) $=
616367
- ( vn vk cn0 cdr cv c1 cfz co cfrlm cprjsp1 cfv cprjsp oveq2 oveq2d fveq2d
616368
- wceq fvoveq1 df-prjsp fvex ovmpt2 ) CDBAEFDGZHCGZIJZKJZLMAHBIJZKJZLMNUCUG
616369
- KJZLMUDBRZUFUILUJUEUGUCKUDBHIOPQUCAUGLKSDCTUHLUAUB $.
616376
+ prjspnval $p |- ( ( N e. NN0 /\ K e. DivRing ) -> ( N PrjSpn K ) =
616377
+ ( PrjSp ` ( K freeLMod ( 1 ... N ) ) ) ) $=
616378
+ ( vn vk cn0 cdr cv c1 cfz co cfrlm cprjsp cfv cprjspn oveq2 oveq2d fveq2d
616379
+ wceq fvoveq1 df-prjspn fvex ovmpt2 ) CDBAEFDGZHCGZIJZKJZLMAHBIJZKJZLMNUCU
616380
+ GKJZLMUDBRZUFUILUJUEUGUCKUDBHIOPQUCAUGLKSDCTUHLUAUB $.
616370
616381
$}
616371
616382
616372
616383
${
0 commit comments