@@ -283923,7 +283923,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
283923
283923
$( Algebraic span function. $)
283924
283924
casp $a class AlgSpan $.
283925
283925
283926
- $( Class of algebra scalar injection function. $)
283926
+ $( Class of algebra scalars function. $)
283927
283927
cascl $a class algSc $.
283928
283928
283929
283929
${
@@ -284335,7 +284335,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284335
284335
asclfval.k $e |- K = ( Base ` F ) $.
284336
284336
asclfval.s $e |- .x. = ( .s ` W ) $.
284337
284337
asclfval.o $e |- .1. = ( 1r ` W ) $.
284338
- $( Function value of the algebraic scalars function. (Contributed by Mario
284338
+ $( Function value of the algebra scalars function. (Contributed by Mario
284339
284339
Carneiro, 8-Mar-2015.) $)
284340
284340
asclfval $p |- A = ( x e. K |-> ( x .x. .1. ) ) $=
284341
284341
( vw cascl cfv cmpt cbs csca eqtr4di c0 cv cvv wcel wceq cur cvsca fveq2d
@@ -284492,8 +284492,8 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284492
284492
$d x y A $. $d x y F $. $d x y W $.
284493
284493
asclrhm.a $e |- A = ( algSc ` W ) $.
284494
284494
asclrhm.f $e |- F = ( Scalar ` W ) $.
284495
- $( The scalar injection is a ring homomorphism. (Contributed by Mario
284496
- Carneiro, 8-Mar-2015.) $)
284495
+ $( The algebra scalars function is a ring homomorphism. (Contributed by
284496
+ Mario Carneiro, 8-Mar-2015.) $)
284497
284497
asclrhm $p |- ( W e. AssAlg -> A e. ( F RingHom W ) ) $=
284498
284498
( vx vy casa wcel cbs cfv cmulr cur assasca assaring assalmod ascl1 cv co
284499
284499
eqid wceq ascldimul 3expb asclghm isrhm2d ) CHIZFGBJKZBCBLKZCLKZBMKZACMKZ
@@ -284506,7 +284506,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284506
284506
rnascl.a $e |- A = ( algSc ` W ) $.
284507
284507
rnascl.o $e |- .1. = ( 1r ` W ) $.
284508
284508
rnascl.n $e |- N = ( LSpan ` W ) $.
284509
- $( The set of injected scalars is also interpretable as the span of the
284509
+ $( The set of lifted scalars is also interpretable as the span of the
284510
284510
identity. (Contributed by Mario Carneiro, 9-Mar-2015.) $)
284511
284511
rnascl $p |- ( W e. AssAlg -> ran A = ( N ` { .1. } ) ) $=
284512
284512
( vx vy casa wcel crn cv cvsca cfv co wceq csca cbs eqid cab csn asclfval
@@ -284579,7 +284579,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
284579
284579
$d S x $. $d W x $. $d X x $.
284580
284580
ressascl.a $e |- A = ( algSc ` W ) $.
284581
284581
ressascl.x $e |- X = ( W |`s S ) $.
284582
- $( The injection of scalars is invariant between subalgebras and
284582
+ $( The lifting of scalars is invariant between subalgebras and
284583
284583
superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.) $)
284584
284584
ressascl $p |- ( S e. ( SubRing ` W ) -> A = ( algSc ` X ) ) $=
284585
284585
( vx csubrg cfv wcel csca cbs cv cur cvsca co cmpt cascl eqid asclfval
@@ -835234,7 +835234,7 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835234
835234
835235
835235
Equivalently, the algebra scalars function is not necessarily
835236
835236
injective unless the algebra is faithful. Therefore, all "scalar
835237
- injection" should be renamed.
835237
+ injection" was renamed.
835238
835238
835239
835239
Alternate proof involves ~ assa2ass , ~ assa2ass2 , and ~ asclval , by
835240
835240
setting ` X ` and ` Y ` the multiplicative identity of the algebra.
0 commit comments