@@ -25941,11 +25941,24 @@ choice between (what we call) a "definitional form" where the shorter
25941
25941
$}
25942
25942
25943
25943
${
25944
- $d y ph $. $d x ps $.
25944
+ $d y z ph $. $d x z ps $. $d x y $.
25945
25945
cbvabv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
25946
25946
$( Rule used to change bound variables, using implicit substitution.
25947
- (Contributed by NM, 26-May-1999.) $)
25947
+ (Contributed by NM, 26-May-1999.) Require ` x ` , ` y ` be disjoint to
25948
+ avoid ~ ax-11 and ~ ax-13 . (Revised by Steven Nguyen, 4-Dec-2022.) $)
25948
25949
cbvabv $p |- { x | ph } = { y | ps } $=
25950
+ ( vz cab wsb cv wcel sbco2vv nfv sbiev sbbii bitr3i df-clab 3bitr4i eqriv
25951
+ ) FACGZBDGZACFHZBDFHZFIZSJUCTJUAACDHZDFHUBACFDKUDBDFABCDBCLEMNOAFCPBFDPQR
25952
+ $.
25953
+ $}
25954
+
25955
+ ${
25956
+ $d y ph $. $d x ps $.
25957
+ cbvabvOLD.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
25958
+ $( Obsolete version of ~ cbvabv as of 9-May-2023. (Contributed by NM,
25959
+ 26-May-1999.) (New usage is discouraged.)
25960
+ (Proof modification is discouraged.) $)
25961
+ cbvabvOLD $p |- { x | ph } = { y | ps } $=
25949
25962
( nfv cbvab ) ABCDADFBCFEG $.
25950
25963
$}
25951
25964
@@ -26240,37 +26253,67 @@ choice between (what we call) a "definitional form" where the shorter
26240
26253
$d w x $. $d w y $. $d w z $. $d w A $. $d w B $.
26241
26254
drnfc1.1 $e |- ( A. x x = y -> A = B ) $.
26242
26255
$( Formula-building lemma for use with the Distinctor Reduction Theorem.
26243
- (Contributed by Mario Carneiro, 8-Oct-2016.) $)
26256
+ (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ~ ax-11 . (Revised
26257
+ by Wolf Lammen, 10-May-2023.) $)
26244
26258
drnfc1 $p |- ( A. x x = y -> ( F/_ x A <-> F/_ y B ) ) $=
26259
+ ( vw weq wal cv wcel wnf wnfc eleq2d drnf1 albidv df-nfc 3bitr4g ) ABGAHZ
26260
+ FIZCJZAKZFHSDJZBKZFHACLBDLRUAUCFTUBABRCDSEMNOAFCPBFDPQ $.
26261
+
26262
+ $( Obsolete version of ~ drnfc1 as of 10-May-2023. (Contributed by Mario
26263
+ Carneiro, 8-Oct-2016.) (Proof modification is discouraged.)
26264
+ (New usage is discouraged.) $)
26265
+ drnfc1OLD $p |- ( A. x x = y -> ( F/_ x A <-> F/_ y B ) ) $=
26245
26266
( vw weq wal cv wcel wnf wnfc eleq2d drnf1 dral2 df-nfc 3bitr4g ) ABGAHZF
26246
26267
IZCJZAKZFHSDJZBKZFHACLBDLUAUCABFTUBABRCDSEMNOAFCPBFDPQ $.
26247
26268
26248
26269
$( Formula-building lemma for use with the Distinctor Reduction Theorem.
26249
26270
(Contributed by Mario Carneiro, 8-Oct-2016.) $)
26250
26271
drnfc2 $p |- ( A. x x = y -> ( F/_ z A <-> F/_ z B ) ) $=
26251
- ( vw weq wal cv wcel wnf wnfc eleq2d drnf2 dral2 df-nfc 3bitr4g ) ABHAIZG
26252
- JZDKZCLZGITEKZCLZGICDMCEMUBUDABGUAUCABCSDETFNOPCGDQCGEQR $.
26272
+ ( vw weq wal cv wcel wnf wnfc eleq2d drnf2 albidv df-nfc 3bitr4g ) ABHAIZ
26273
+ GJZDKZCLZGITEKZCLZGICDMCEMSUBUDGUAUCABCSDETFNOPCGDQCGEQR $.
26253
26274
$}
26254
26275
26255
26276
${
26256
26277
$d x z $. $d y z $. $d z ph $. $d z ps $.
26278
+ nfabd.1 $e |- F/ y ph $.
26279
+ nfabd.2 $e |- ( ph -> F/ x ps ) $.
26280
+ $( Bound-variable hypothesis builder for a class abstraction. (Contributed
26281
+ by Mario Carneiro, 8-Oct-2016.) Avoid ~ ax-9 and ~ ax-ext . (Revised
26282
+ by Wolf Lammen, 23-May-2023.) $)
26283
+ nfabd $p |- ( ph -> F/_ x { y | ps } ) $=
26284
+ ( vz cab nfv cv wcel wsb df-clab nfsbd nfxfrd nfcd ) ACGBDHZAGIGJQKBDGLAC
26285
+ BGDMABDGCEFNOP $.
26286
+ $}
26287
+
26288
+ ${
26257
26289
nfabd2.1 $e |- F/ y ph $.
26258
26290
nfabd2.2 $e |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) $.
26259
26291
$( Bound-variable hypothesis builder for a class abstraction. (Contributed
26260
- by Mario Carneiro, 8-Oct-2016.) $)
26292
+ by Mario Carneiro, 8-Oct-2016.) (Proof shortened by Wolf Lammen,
26293
+ 10-May-2023.) $)
26261
26294
nfabd2 $p |- ( ph -> F/_ x { y | ps } ) $=
26295
+ ( weq wal cab wnfc wn wa nfnae nfan nfabd ex nfab1 eqidd drnfc1 mpbiri
26296
+ pm2.61d2 ) ACDGCHZCBDIZJZAUBKZUDAUELBCDAUEDECDDMNFOPUBUDDUCJBDQCDUCUCUBUC
26297
+ RSTUA $.
26298
+
26299
+ $d x z $. $d y z $. $d z ph $. $d z ps $.
26300
+ $( Obsolete version of ~ nfabd2 as of 23-May-2023. (Contributed by Mario
26301
+ Carneiro, 8-Oct-2016.) (Proof modification is discouraged.)
26302
+ (New usage is discouraged.) $)
26303
+ nfabd2OLD $p |- ( ph -> F/_ x { y | ps } ) $=
26262
26304
( vz weq wal cab wnfc wn wa nfv cv wcel wsb df-clab nfnae nfan nfsbd nfcd
26263
26305
nfxfrd ex nfab1 eqidd drnfc1 mpbiri pm2.61d2 ) ACDHCIZCBDJZKZAUJLZULAUMMZ
26264
26306
CGUKUNGNGOUKPBDGQUNCBGDRUNBDGCAUMDECDDSTFUAUCUBUDUJULDUKKBDUECDUKUKUJUKUF
26265
26307
UGUHUI $.
26266
26308
$}
26267
26309
26268
26310
${
26269
- nfabd.1 $e |- F/ y ph $.
26270
- nfabd.2 $e |- ( ph -> F/ x ps ) $.
26271
- $( Bound-variable hypothesis builder for a class abstraction. (Contributed
26272
- by Mario Carneiro, 8-Oct-2016.) $)
26273
- nfabd $p |- ( ph -> F/_ x { y | ps } ) $=
26311
+ nfabdOLD.1 $e |- F/ y ph $.
26312
+ nfabdOLD.2 $e |- ( ph -> F/ x ps ) $.
26313
+ $( Obsolete version of ~ nfabd as of 10-May-2023. (Contributed by Mario
26314
+ Carneiro, 8-Oct-2016.) (Proof modification is discouraged.)
26315
+ (New usage is discouraged.) $)
26316
+ nfabdOLD $p |- ( ph -> F/_ x { y | ps } ) $=
26274
26317
( wnf weq wal wn adantr nfabd2 ) ABCDEABCGCDHCIJFKL $.
26275
26318
$}
26276
26319
@@ -26301,27 +26344,47 @@ choice between (what we call) a "definitional form" where the shorter
26301
26344
$}
26302
26345
26303
26346
${
26304
- $d x z $. $d y z $.
26347
+ $d x w z $. $d y w z $.
26305
26348
$( If ` x ` and ` y ` are distinct, then ` x ` is not free in ` y ` .
26306
- (Contributed by Mario Carneiro, 8-Oct-2016.) $)
26349
+ (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ~ ax-ext . (Revised
26350
+ by Wolf Lammen, 10-May-2023.) $)
26307
26351
nfcvf $p |- ( -. A. x x = y -> F/_ x y ) $=
26308
- ( vz cv nfcv weq id dvelimc ) ABCCDZBDZAIECJECBFGH $.
26352
+ ( vw vz weq wal wn cv nfv wel elequ2 dvelimnf nfcd ) ABEAFGZACBHNCICDJZCB
26353
+ JABDOAIDBCKLM $.
26309
26354
26310
26355
$( If ` x ` and ` y ` are distinct, then ` y ` is not free in ` x ` .
26311
26356
(Contributed by Mario Carneiro, 5-Dec-2016.) $)
26312
26357
nfcvf2 $p |- ( -. A. x x = y -> F/_ y x ) $=
26313
26358
( cv wnfc nfcvf naecoms ) BACDBABAEF $.
26314
26359
$}
26315
26360
26361
+ ${
26362
+ $d x z $. $d y z $.
26363
+ $( Obsolete version of ~ nfcvf as of 10-May-2023. (Contributed by Mario
26364
+ Carneiro, 8-Oct-2016.) (Proof modification is discouraged.)
26365
+ (New usage is discouraged.) $)
26366
+ nfcvfOLD $p |- ( -. A. x x = y -> F/_ x y ) $=
26367
+ ( vz cv nfcv weq id dvelimc ) ABCCDZBDZAIECJECBFGH $.
26368
+ $}
26369
+
26316
26370
${
26317
26371
$d y A $. $d y B $. $d x y $.
26318
26372
cleqf.1 $e |- F/_ x A $.
26319
26373
cleqf.2 $e |- F/_ x B $.
26320
26374
$( Establish equality between classes, using bound-variable hypotheses
26321
26375
instead of distinct variable conditions. See also ~ cleqh .
26322
26376
(Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro,
26323
- 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) $)
26377
+ 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid
26378
+ ~ ax-13 . (Revised by Wolf Lammen, 10-May-2023.) $)
26324
26379
cleqf $p |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) $=
26380
+ ( vy cv wcel wnfc wnf nfcr ax-mp nf5ri cleqh ) AFBCFGZBHZAABIPAJDAFBKLMOC
26381
+ HZAACIQAJEAFCKLMN $.
26382
+
26383
+ $( Obsolete version of ~ cleqf as of 10-May-2023. (Contributed by NM,
26384
+ 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof
26385
+ shortened by Wolf Lammen, 17-Nov-2019.) (New usage is discouraged.)
26386
+ (Proof modification is discouraged.) $)
26387
+ cleqfOLD $p |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) $=
26325
26388
( vy nfcrii cleqh ) AFBCAFBDGAFCEGH $.
26326
26389
$}
26327
26390
@@ -32701,7 +32764,7 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy
32701
32764
$( Distribute conditional equality over abstraction. (Contributed by
32702
32765
Mario Carneiro, 11-Aug-2016.) $)
32703
32766
cdeqab1 $p |- CondEq ( x = y -> { x | ph } = { y | ps } ) $=
32704
- ( cab wceq wb cdeqri cbvabv cdeqth ) ACFBDFGCDABCDABHCDEIJK $.
32767
+ ( cab wceq nfv wb cdeqri cbvab cdeqth ) ACFBDFGCDABCDADHBCHABICDEJKL $.
32705
32768
$}
32706
32769
32707
32770
cdeqim.1 $e |- CondEq ( x = y -> ( ch <-> th ) ) $.
@@ -413426,7 +413489,7 @@ symbols representing (not necessarily different) vertices connected by
413426
413489
$( If there is only a finite number of vertices, the number of closed walks
413427
413490
of fixed length (as words) is also finite. (Contributed by Alexander
413428
413491
van der Vekens, 25-Mar-2018.) (Revised by AV, 25-Apr-2021.) (Proof
413429
- shortened by AV, 22-Mar-2022.) $)
413492
+ shortened by AV, 22-Mar-2022.) (Proof shortened by JJ, 18-Nov-2022.) $)
413430
413493
clwwlknfi $p |- ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) $=
413431
413494
( vw cvtx cfv cfn wcel cclwwlkn co chash wceq cclwwlk crab clwwlkn wrdnfi
413432
413495
cv cword wss clwwlksswrd rabss2 mp1i ssfid syl5eqel ) ADEZFGZBAHICPJEBKZC
0 commit comments