@@ -150740,7 +150740,7 @@ computer programs (as last() or lastChar()), the terminology used for
150740
150740
$( There is a unique word having the length of a given word increased by 1
150741
150741
with the given word as prefix if there is a unique symbol which extends
150742
150742
the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.)
150743
- (Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2020 .) (Proof
150743
+ (Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022 .) (Proof
150744
150744
shortened by AV, 13-Oct-2022.) $)
150745
150745
reuccatpfxs1v $p |- ( ( W e. Word V /\ A. x e. X ( x e. Word V
150746
150746
/\ ( # ` x ) = ( ( # ` W ) + 1 ) ) )
@@ -321580,7 +321580,7 @@ need not be complete (for instance if the given set is infinite
321580
321580
321581
321581
$( Define a function generating the real Euclidean spaces of finite
321582
321582
dimension. The case ` n = 0 ` corresponds to a space of dimension 0,
321583
- that is, limited to a neutral element (see ~ehl0 ). Members of this
321583
+ that is, limited to a neutral element (see ~ ehl0 ). Members of this
321584
321584
family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed
321585
321585
by Thierry Arnoux, 16-Jun-2019.) $)
321586
321586
df-ehl $a |- EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) ) $.
@@ -412773,7 +412773,7 @@ closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as
412773
412773
$( The set of closed walks of a fixed length ` N ` as words over the set of
412774
412774
vertices in a graph ` G ` . (Contributed by Alexander van der Vekens,
412775
412775
20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV,
412776
- 22-Mar-2021 .) $)
412776
+ 22-Mar-2022 .) $)
412777
412777
clwwlkn $p |- ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) |
412778
412778
( # ` w ) = N } $=
412779
412779
( vn vg cn0 wcel cvv wa cclwwlkn co cv chash wceq cclwwlk crab wn c0 wral
@@ -412791,7 +412791,7 @@ closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as
412791
412791
$d G w $. $d N w $. $d W w $.
412792
412792
$( A word over the set of vertices representing a closed walk of a fixed
412793
412793
length. (Contributed by Alexander van der Vekens, 15-Mar-2018.)
412794
- (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2021 .) $)
412794
+ (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022 .) $)
412795
412795
isclwwlkn $p |- ( W e. ( N ClWWalksN G )
412796
412796
<-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) $=
412797
412797
( vw cv chash cfv wceq cclwwlk cclwwlkn co fveqeq2 clwwlkn elrab2 ) DEZFG
@@ -616119,7 +616119,7 @@ fixed reference functional determined by this vector (corresponding to
616119
616119
the result of ` ( A .+ B ) ` only needs to be a complex number).
616120
616120
616121
616121
The natural numbers are especially amenable to axiom reductions, as the set
616122
- ` NN ` is the recursive set ` { 1 , ( 1 + 1 ) , ( ( 1 + 1 ) + 1 ) }` , etc.,
616122
+ ` NN ` is the recursive set ` { 1 , ( 1 + 1 ) , ( ( 1 + 1 ) + 1 ) } ` , etc.,
616123
616123
i.e. the set of numbers formed by only additions of 1. The digits 2 through
616124
616124
9 are defined so that they expand into additions of 1. This makes adding
616125
616125
natural numbers conveniently only require the rearrangement of parentheses,
@@ -712170,18 +712170,18 @@ description binder (inverted iota). $)
712170
712170
ordinarily contains ` x ` as a free variable. Our definition is
712171
712171
meaningful only when there is exactly one ` x ` such that ` ph ` is true
712172
712172
(see ~ aiotaval ); otherwise, it is not a set (see ~ aiotaexb ), or even
712173
- more concrete, it is the universe ` _V ` (see ~aiotavb ). Since this is
712174
- an alternative for ~df-iota , we call this symbol ` iota' ` _alternate
712175
- iota_ in the following.
712173
+ more concrete, it is the universe ` _V ` (see ~ aiotavb ). Since this
712174
+ is an alternative for ~ df-iota , we call this symbol ` iota' `
712175
+ _alternate iota_ in the following.
712176
712176
712177
712177
The advantage of this definition is the clear distinguishability of the
712178
712178
defined and undefined cases: the alternate iota over a wff is defined
712179
712179
iff it is a set (see ~ aiotaexb ). With the original definition, there
712180
712180
is no corresponding theorem ` ( E! x ph <-> ( iota x ph ) =/= (/) ) ` ,
712181
712181
because ` (/) ` can be a valid unique set satisfying a wff (see, for
712182
- example, ~iota0def ). Only the right to left implication would hold,
712183
- see (negated) ~iotanul . For defined cases, however, both definitions
712184
- ~df-iota and ~df-aiota are equivalent, see ~ reuaiotaiota . (Proposed
712182
+ example, ~ iota0def ). Only the right to left implication would hold,
712183
+ see (negated) ~ iotanul . For defined cases, however, both definitions
712184
+ ~ df-iota and ~ df-aiota are equivalent, see ~ reuaiotaiota . (Proposed
712185
712185
by BJ, 13-Aug-2022.) (Contributed by AV, 24-Aug-2022.) $)
712186
712186
df-aiota $a |- ( iota' x ph ) = |^| { y | { x | ph } = { y } } $.
712187
712187
@@ -713831,7 +713831,7 @@ Alternative definitions of function values (2)
713831
713831
(see ~ dfatafv2eqfv ).
713832
713832
713833
713833
With this definition the following intuitive equivalence holds:
713834
- ` ( F defAt A <-> ( F '''' A ) e. ran F ) `, see ~dfatafv2rnb .
713834
+ ` ( F defAt A <-> ( F '''' A ) e. ran F ) `, see ~ dfatafv2rnb .
713835
713835
713836
713836
An interesting question would be if ` ( F `` A ) ` could be replaced by
713837
713837
` ( F ''' A ) ` in most of the theorems based on function values. If we look
@@ -722327,7 +722327,7 @@ and specializations for simple hypergraphs ( ~ isomushgr ) and simple
722327
722327
definition in [Bollobas] p. 3). It is shown that the isomorphy relation for
722328
722328
graphs is an equivalence relation ( ~ isomgrref , ~ isomgrsym , ~ isomgrtr ).
722329
722329
Fianlly, isomorphic graphs with different representations are studied
722330
- ( ~strisomgrop , ~ ushrisomgr ).
722330
+ ( ~ strisomgrop , ~ ushrisomgr ).
722331
722331
722332
722332
Maybe more important than graph isomorphy is the notion of graph isomorphism,
722333
722333
which can be defined as in ~ df-grisom . Then ` A IsomGr B <-> `
0 commit comments