Skip to content

Commit e7eddff

Browse files
authored
Fix misc markup (#3248)
1 parent b584f15 commit e7eddff

File tree

1 file changed

+13
-13
lines changed

1 file changed

+13
-13
lines changed

set.mm

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -150740,7 +150740,7 @@ computer programs (as last() or lastChar()), the terminology used for
150740150740
$( There is a unique word having the length of a given word increased by 1
150741150741
with the given word as prefix if there is a unique symbol which extends
150742150742
the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.)
150743-
(Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2020.) (Proof
150743+
(Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022.) (Proof
150744150744
shortened by AV, 13-Oct-2022.) $)
150745150745
reuccatpfxs1v $p |- ( ( W e. Word V /\ A. x e. X ( x e. Word V
150746150746
/\ ( # ` x ) = ( ( # ` W ) + 1 ) ) )
@@ -321580,7 +321580,7 @@ need not be complete (for instance if the given set is infinite
321580321580

321581321581
$( Define a function generating the real Euclidean spaces of finite
321582321582
dimension. The case ` n = 0 ` corresponds to a space of dimension 0,
321583-
that is, limited to a neutral element (see ~ehl0 ). Members of this
321583+
that is, limited to a neutral element (see ~ ehl0 ). Members of this
321584321584
family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed
321585321585
by Thierry Arnoux, 16-Jun-2019.) $)
321586321586
df-ehl $a |- EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) ) $.
@@ -412773,7 +412773,7 @@ closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as
412773412773
$( The set of closed walks of a fixed length ` N ` as words over the set of
412774412774
vertices in a graph ` G ` . (Contributed by Alexander van der Vekens,
412775412775
20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV,
412776-
22-Mar-2021.) $)
412776+
22-Mar-2022.) $)
412777412777
clwwlkn $p |- ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) |
412778412778
( # ` w ) = N } $=
412779412779
( vn vg cn0 wcel cvv wa cclwwlkn co cv chash wceq cclwwlk crab wn c0 wral
@@ -412791,7 +412791,7 @@ closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as
412791412791
$d G w $. $d N w $. $d W w $.
412792412792
$( A word over the set of vertices representing a closed walk of a fixed
412793412793
length. (Contributed by Alexander van der Vekens, 15-Mar-2018.)
412794-
(Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2021.) $)
412794+
(Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) $)
412795412795
isclwwlkn $p |- ( W e. ( N ClWWalksN G )
412796412796
<-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) $=
412797412797
( vw cv chash cfv wceq cclwwlk cclwwlkn co fveqeq2 clwwlkn elrab2 ) DEZFG
@@ -616119,7 +616119,7 @@ fixed reference functional determined by this vector (corresponding to
616119616119
the result of ` ( A .+ B ) ` only needs to be a complex number).
616120616120

616121616121
The natural numbers are especially amenable to axiom reductions, as the set
616122-
` NN ` is the recursive set ` { 1 , ( 1 + 1 ) , ( ( 1 + 1 ) + 1 ) }` , etc.,
616122+
` NN ` is the recursive set ` { 1 , ( 1 + 1 ) , ( ( 1 + 1 ) + 1 ) } ` , etc.,
616123616123
i.e. the set of numbers formed by only additions of 1. The digits 2 through
616124616124
9 are defined so that they expand into additions of 1. This makes adding
616125616125
natural numbers conveniently only require the rearrangement of parentheses,
@@ -712170,18 +712170,18 @@ description binder (inverted iota). $)
712170712170
ordinarily contains ` x ` as a free variable. Our definition is
712171712171
meaningful only when there is exactly one ` x ` such that ` ph ` is true
712172712172
(see ~ aiotaval ); otherwise, it is not a set (see ~ aiotaexb ), or even
712173-
more concrete, it is the universe ` _V ` (see ~aiotavb ). Since this is
712174-
an alternative for ~df-iota , we call this symbol ` iota' ` _alternate
712175-
iota_ in the following.
712173+
more concrete, it is the universe ` _V ` (see ~ aiotavb ). Since this
712174+
is an alternative for ~ df-iota , we call this symbol ` iota' `
712175+
_alternate iota_ in the following.
712176712176

712177712177
The advantage of this definition is the clear distinguishability of the
712178712178
defined and undefined cases: the alternate iota over a wff is defined
712179712179
iff it is a set (see ~ aiotaexb ). With the original definition, there
712180712180
is no corresponding theorem ` ( E! x ph <-> ( iota x ph ) =/= (/) ) ` ,
712181712181
because ` (/) ` can be a valid unique set satisfying a wff (see, for
712182-
example, ~iota0def ). Only the right to left implication would hold,
712183-
see (negated) ~iotanul . For defined cases, however, both definitions
712184-
~df-iota and ~df-aiota are equivalent, see ~ reuaiotaiota . (Proposed
712182+
example, ~ iota0def ). Only the right to left implication would hold,
712183+
see (negated) ~ iotanul . For defined cases, however, both definitions
712184+
~ df-iota and ~ df-aiota are equivalent, see ~ reuaiotaiota . (Proposed
712185712185
by BJ, 13-Aug-2022.) (Contributed by AV, 24-Aug-2022.) $)
712186712186
df-aiota $a |- ( iota' x ph ) = |^| { y | { x | ph } = { y } } $.
712187712187

@@ -713831,7 +713831,7 @@ Alternative definitions of function values (2)
713831713831
(see ~ dfatafv2eqfv ).
713832713832

713833713833
With this definition the following intuitive equivalence holds:
713834-
` ( F defAt A <-> ( F '''' A ) e. ran F ) `, see ~dfatafv2rnb .
713834+
` ( F defAt A <-> ( F '''' A ) e. ran F ) `, see ~ dfatafv2rnb .
713835713835

713836713836
An interesting question would be if ` ( F `` A ) ` could be replaced by
713837713837
` ( F ''' A ) ` in most of the theorems based on function values. If we look
@@ -722327,7 +722327,7 @@ and specializations for simple hypergraphs ( ~ isomushgr ) and simple
722327722327
definition in [Bollobas] p. 3). It is shown that the isomorphy relation for
722328722328
graphs is an equivalence relation ( ~ isomgrref , ~ isomgrsym , ~ isomgrtr ).
722329722329
Fianlly, isomorphic graphs with different representations are studied
722330-
( ~strisomgrop , ~ ushrisomgr ).
722330+
( ~ strisomgrop , ~ ushrisomgr ).
722331722331

722332722332
Maybe more important than graph isomorphy is the notion of graph isomorphism,
722333722333
which can be defined as in ~ df-grisom . Then ` A IsomGr B <-> `

0 commit comments

Comments
 (0)