@@ -1607,6 +1607,8 @@ giving a shorter proof but depending on more axioms (namely, ~ ax-1 and
1607
1607
( wn wi con4 ax-mp ) ADBDEBAECABFG $.
1608
1608
$}
1609
1609
1610
+ $( $j usage 'con4i' avoids 'ax-1' 'ax-2'; $)
1611
+
1610
1612
${
1611
1613
con4d.1 $e |- ( ph -> ( -. ps -> -. ch ) ) $.
1612
1614
$( Deduction associated with ~ con4 . (Contributed by NM, 26-Mar-1995.) $)
@@ -1641,6 +1643,8 @@ giving a shorter proof but depending on more axioms (namely, ~ ax-1 and
1641
1643
( pm2.21i ax-mp ) ABCABDEF $.
1642
1644
$}
1643
1645
1646
+ $( $j usage 'pm2.24ii' avoids 'ax-2'; $)
1647
+
1644
1648
${
1645
1649
pm2.21d.1 $e |- ( ph -> -. ps ) $.
1646
1650
$( A contradiction implies anything. Deduction associated with ~ pm2.21 .
@@ -1729,6 +1733,8 @@ In classical logic (our logic) this is always true. In intuitionistic
1729
1733
notnotri $p |- ph $=
1730
1734
( wn pm2.21i mt4 ) ACZCZABFGCBDE $.
1731
1735
1736
+ $( $j usage 'notnotri' avoids 'ax-2'; $)
1737
+
1732
1738
$( Alternate proof of ~ notnotri . Inference associated with ~ notnotr .
1733
1739
1734
1740
Remark: the proof via ~ notnotr and ~ ax-mp also has three essential
@@ -13084,6 +13090,8 @@ simplest antecedents (i.e., in the corresponding ordering of binary trees
13084
13090
( ( ps -> ch ) -> ( ( ( th -> ps ) -> ( ch -> ta ) ) -> ( ps -> ta ) ) ) ) $=
13085
13091
( wi jarr a2d com12 a1i ) BCFZDBFCEFZFZBEFZFFAMKNMBCEDBLGHIJ $.
13086
13092
13093
+ $( $j usage 'minimp' avoids 'ax-3'; $)
13094
+
13087
13095
$( Derivation of Syll-Simp ( ~ jarr ) from ~ ax-mp and ~ minimp .
13088
13096
(Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.)
13089
13097
(New usage is discouraged.) $)
@@ -28919,9 +28927,18 @@ choice between (what we call) a "definitional form" where the shorter
28919
28927
$}
28920
28928
28921
28929
$( Restricted quantifier version of ~ 19.30 . (Contributed by Scott Fenton,
28922
- 25-Feb-2011.) $)
28930
+ 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.) $)
28923
28931
r19.30 $p |- ( A. x e. A ( ph \/ ps ) ->
28924
28932
( A. x e. A ph \/ E. x e. A ps ) ) $=
28933
+ ( wo wral wn wi wrex pm2.53 orcoms ralimi ralnex biimpri imim1i orrd orcomd
28934
+ ralim 3syl ) ABEZCDFBGZAHZCDFUACDFZACDFZHZUDBCDIZETUBCDBAUBBAJKLUAACDRUEUFU
28935
+ DUEUFUDUFGZUCUDUCUGBCDMNOPQS $.
28936
+
28937
+ $( Obsolete version of ~ r19.30 as of 18-Jun-2023. (Contributed by Scott
28938
+ Fenton, 25-Feb-2011.) (Proof modification is discouraged.)
28939
+ (New usage is discouraged.) $)
28940
+ r19.30OLD $p |- ( A. x e. A ( ph \/ ps ) ->
28941
+ ( A. x e. A ph \/ E. x e. A ps ) ) $=
28925
28942
( wn wi wral wrex ralim orcom df-or bitri ralbii dfrex2 orbi2i imor 3bitr4i
28926
28943
wo 3imtr4i ) BEZAFZCDGTCDGZACDGZFZABRZCDGUCBCDHZRZTACDIUEUACDUEBARUAABJBAKL
28927
28944
MUCUBEZRUHUCRUGUDUCUHJUFUHUCBCDNOUBUCPQS $.
@@ -28939,9 +28956,9 @@ choice between (what we call) a "definitional form" where the shorter
28939
28956
20-Sep-2003.) $)
28940
28957
r19.35 $p |- ( E. x e. A ( ph -> ps ) <->
28941
28958
( A. x e. A ph -> E. x e. A ps ) ) $=
28942
- ( wral wn wi wrex r19.26 annim ralbii df-an 3bitr3i con2bii dfrex2 3bitr4ri
28943
- wa imbi2i ) ACDEZBFZCDEZFZGZABGZFZCDEZFSBCDHZGUDCDHUFUCATQZCDESUAQUFUCFATCD
28944
- IUHUECDABJKSUALMNUGUBSBCDORUDCDOP $.
28959
+ ( wi wrex wral pm2.27 ralimi rexim syl com12 wn rexnal pm2.21 reximi sylbir
28960
+ ax-1 ja impbii ) ABEZCDFZACDGZBCDFZEUCUBUDUCUABEZCDGUBUDEAUECDABHIUABCDJKLU
28961
+ CUDUBUCMAMZCDFUBACDNUFUACDABOPQBUACDBARPST $.
28945
28962
28946
28963
${
28947
28964
$d x ps $.
@@ -28967,8 +28984,16 @@ choice between (what we call) a "definitional form" where the shorter
28967
28984
$d x ph $.
28968
28985
$( Restricted quantifier version of one direction of ~ 19.37v . (The other
28969
28986
direction holds iff ` A ` is nonempty, see ~ r19.37zv .) (Contributed
28970
- by NM, 2-Apr-2004.) $)
28987
+ by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen,
28988
+ 18-Jun-2023.) $)
28971
28989
r19.37v $p |- ( E. x e. A ( ph -> ps ) -> ( ph -> E. x e. A ps ) ) $=
28990
+ ( wral wi wrex id ralrimivw r19.35 biimpi syl5 ) AACDEZABFCDGZBCDGZAACDAH
28991
+ INMOFABCDJKL $.
28992
+
28993
+ $( Obsolete version of ~ r19.37v as of 18-Jun-2023. (Contributed by NM,
28994
+ 2-Apr-2004.) (Proof modification is discouraged.)
28995
+ (New usage is discouraged.) $)
28996
+ r19.37vOLD $p |- ( E. x e. A ( ph -> ps ) -> ( ph -> E. x e. A ps ) ) $=
28972
28997
( nfv r19.37 ) ABCDACEF $.
28973
28998
$}
28974
28999
0 commit comments