Skip to content

Commit f39f0db

Browse files
authored
reduce axioms in r19.37v (#3259)
* shorten r19.30 * revise r19.37v --------- Co-authored-by: Wolf Lammen <[email protected]>
1 parent 0c27547 commit f39f0db

File tree

2 files changed

+34
-5
lines changed

2 files changed

+34
-5
lines changed

discouraged

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -17293,6 +17293,8 @@ New usage of "r19.27vOLD" is discouraged (0 uses).
1729317293
New usage of "r19.28vOLD" is discouraged (0 uses).
1729417294
New usage of "r19.29aOLD" is discouraged (0 uses).
1729517295
New usage of "r19.29anOLD" is discouraged (0 uses).
17296+
New usage of "r19.30OLD" is discouraged (0 uses).
17297+
New usage of "r19.37vOLD" is discouraged (0 uses).
1729617298
New usage of "r1omALT" is discouraged (0 uses).
1729717299
New usage of "r1pwALT" is discouraged (0 uses).
1729817300
New usage of "ralbiOLD" is discouraged (0 uses).
@@ -19534,6 +19536,8 @@ Proof modification of "r19.27vOLD" is discouraged (39 steps).
1953419536
Proof modification of "r19.28vOLD" is discouraged (38 steps).
1953519537
Proof modification of "r19.29aOLD" is discouraged (11 steps).
1953619538
Proof modification of "r19.29anOLD" is discouraged (35 steps).
19539+
Proof modification of "r19.30OLD" is discouraged (75 steps).
19540+
Proof modification of "r19.37vOLD" is discouraged (8 steps).
1953719541
Proof modification of "r1omALT" is discouraged (13 steps).
1953819542
Proof modification of "r1pwALT" is discouraged (151 steps).
1953919543
Proof modification of "ralbiOLD" is discouraged (19 steps).

set.mm

Lines changed: 30 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1607,6 +1607,8 @@ giving a shorter proof but depending on more axioms (namely, ~ ax-1 and
16071607
( wn wi con4 ax-mp ) ADBDEBAECABFG $.
16081608
$}
16091609

1610+
$( $j usage 'con4i' avoids 'ax-1' 'ax-2'; $)
1611+
16101612
${
16111613
con4d.1 $e |- ( ph -> ( -. ps -> -. ch ) ) $.
16121614
$( Deduction associated with ~ con4 . (Contributed by NM, 26-Mar-1995.) $)
@@ -1641,6 +1643,8 @@ giving a shorter proof but depending on more axioms (namely, ~ ax-1 and
16411643
( pm2.21i ax-mp ) ABCABDEF $.
16421644
$}
16431645

1646+
$( $j usage 'pm2.24ii' avoids 'ax-2'; $)
1647+
16441648
${
16451649
pm2.21d.1 $e |- ( ph -> -. ps ) $.
16461650
$( A contradiction implies anything. Deduction associated with ~ pm2.21 .
@@ -1729,6 +1733,8 @@ In classical logic (our logic) this is always true. In intuitionistic
17291733
notnotri $p |- ph $=
17301734
( wn pm2.21i mt4 ) ACZCZABFGCBDE $.
17311735

1736+
$( $j usage 'notnotri' avoids 'ax-2'; $)
1737+
17321738
$( Alternate proof of ~ notnotri . Inference associated with ~ notnotr .
17331739

17341740
Remark: the proof via ~ notnotr and ~ ax-mp also has three essential
@@ -13084,6 +13090,8 @@ simplest antecedents (i.e., in the corresponding ordering of binary trees
1308413090
( ( ps -> ch ) -> ( ( ( th -> ps ) -> ( ch -> ta ) ) -> ( ps -> ta ) ) ) ) $=
1308513091
( wi jarr a2d com12 a1i ) BCFZDBFCEFZFZBEFZFFAMKNMBCEDBLGHIJ $.
1308613092

13093+
$( $j usage 'minimp' avoids 'ax-3'; $)
13094+
1308713095
$( Derivation of Syll-Simp ( ~ jarr ) from ~ ax-mp and ~ minimp .
1308813096
(Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.)
1308913097
(New usage is discouraged.) $)
@@ -28919,9 +28927,18 @@ choice between (what we call) a "definitional form" where the shorter
2891928927
$}
2892028928

2892128929
$( Restricted quantifier version of ~ 19.30 . (Contributed by Scott Fenton,
28922-
25-Feb-2011.) $)
28930+
25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.) $)
2892328931
r19.30 $p |- ( A. x e. A ( ph \/ ps ) ->
2892428932
( A. x e. A ph \/ E. x e. A ps ) ) $=
28933+
( wo wral wn wi wrex pm2.53 orcoms ralimi ralnex biimpri imim1i orrd orcomd
28934+
ralim 3syl ) ABEZCDFBGZAHZCDFUACDFZACDFZHZUDBCDIZETUBCDBAUBBAJKLUAACDRUEUFU
28935+
DUEUFUDUFGZUCUDUCUGBCDMNOPQS $.
28936+
28937+
$( Obsolete version of ~ r19.30 as of 18-Jun-2023. (Contributed by Scott
28938+
Fenton, 25-Feb-2011.) (Proof modification is discouraged.)
28939+
(New usage is discouraged.) $)
28940+
r19.30OLD $p |- ( A. x e. A ( ph \/ ps ) ->
28941+
( A. x e. A ph \/ E. x e. A ps ) ) $=
2892528942
( wn wi wral wrex ralim orcom df-or bitri ralbii dfrex2 orbi2i imor 3bitr4i
2892628943
wo 3imtr4i ) BEZAFZCDGTCDGZACDGZFZABRZCDGUCBCDHZRZTACDIUEUACDUEBARUAABJBAKL
2892728944
MUCUBEZRUHUCRUGUDUCUHJUFUHUCBCDNOUBUCPQS $.
@@ -28939,9 +28956,9 @@ choice between (what we call) a "definitional form" where the shorter
2893928956
20-Sep-2003.) $)
2894028957
r19.35 $p |- ( E. x e. A ( ph -> ps ) <->
2894128958
( A. x e. A ph -> E. x e. A ps ) ) $=
28942-
( wral wn wi wrex r19.26 annim ralbii df-an 3bitr3i con2bii dfrex2 3bitr4ri
28943-
wa imbi2i ) ACDEZBFZCDEZFZGZABGZFZCDEZFSBCDHZGUDCDHUFUCATQZCDESUAQUFUCFATCD
28944-
IUHUECDABJKSUALMNUGUBSBCDORUDCDOP $.
28959+
( wi wrex wral pm2.27 ralimi rexim syl com12 wn rexnal pm2.21 reximi sylbir
28960+
ax-1 ja impbii ) ABEZCDFZACDGZBCDFZEUCUBUDUCUABEZCDGUBUDEAUECDABHIUABCDJKLU
28961+
CUDUBUCMAMZCDFUBACDNUFUACDABOPQBUACDBARPST $.
2894528962

2894628963
${
2894728964
$d x ps $.
@@ -28967,8 +28984,16 @@ choice between (what we call) a "definitional form" where the shorter
2896728984
$d x ph $.
2896828985
$( Restricted quantifier version of one direction of ~ 19.37v . (The other
2896928986
direction holds iff ` A ` is nonempty, see ~ r19.37zv .) (Contributed
28970-
by NM, 2-Apr-2004.) $)
28987+
by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen,
28988+
18-Jun-2023.) $)
2897128989
r19.37v $p |- ( E. x e. A ( ph -> ps ) -> ( ph -> E. x e. A ps ) ) $=
28990+
( wral wi wrex id ralrimivw r19.35 biimpi syl5 ) AACDEZABFCDGZBCDGZAACDAH
28991+
INMOFABCDJKL $.
28992+
28993+
$( Obsolete version of ~ r19.37v as of 18-Jun-2023. (Contributed by NM,
28994+
2-Apr-2004.) (Proof modification is discouraged.)
28995+
(New usage is discouraged.) $)
28996+
r19.37vOLD $p |- ( E. x e. A ( ph -> ps ) -> ( ph -> E. x e. A ps ) ) $=
2897228997
( nfv r19.37 ) ABCDACEF $.
2897328998
$}
2897428999

0 commit comments

Comments
 (0)