diff --git a/iset-discouraged b/iset-discouraged index 728601ef7..0459c3db5 100644 --- a/iset-discouraged +++ b/iset-discouraged @@ -70,6 +70,7 @@ "ax-addf" is used by "addcncntop". "ax-addf" is used by "addex". "ax-addf" is used by "cnfldplusf". +"ax-addf" is used by "mpocnfldadd". "ax-addrcl" is used by "readdcl". "ax-arch" is used by "arch". "ax-caucvg" is used by "caucvgre". @@ -86,6 +87,7 @@ "ax-mulass" is used by "mulass". "ax-mulcl" is used by "mulcl". "ax-mulcom" is used by "mulcom". +"ax-mulf" is used by "mpocnfldmul". "ax-mulf" is used by "mulcncntop". "ax-mulf" is used by "mulex". "ax-mulrcl" is used by "remulcl". @@ -354,7 +356,7 @@ New usage of "ax-1re" is discouraged (1 uses). New usage of "ax-addass" is discouraged (1 uses). New usage of "ax-addcl" is discouraged (1 uses). New usage of "ax-addcom" is discouraged (1 uses). -New usage of "ax-addf" is discouraged (3 uses). +New usage of "ax-addf" is discouraged (4 uses). New usage of "ax-addrcl" is discouraged (1 uses). New usage of "ax-arch" is discouraged (1 uses). New usage of "ax-caucvg" is discouraged (1 uses). @@ -370,7 +372,7 @@ New usage of "ax-io" is discouraged (1 uses). New usage of "ax-mulass" is discouraged (1 uses). New usage of "ax-mulcl" is discouraged (1 uses). New usage of "ax-mulcom" is discouraged (1 uses). -New usage of "ax-mulf" is discouraged (2 uses). +New usage of "ax-mulf" is discouraged (3 uses). New usage of "ax-mulrcl" is discouraged (1 uses). New usage of "ax0id" is discouraged (0 uses). New usage of "ax0lt1" is discouraged (0 uses). diff --git a/iset.mm b/iset.mm index 0da793396..2b91e954b 100644 --- a/iset.mm +++ b/iset.mm @@ -153313,6 +153313,25 @@ since the target of the homomorphism (operator ` O ` in our model) need ( vx vy csubmnd cfv wcel cbs cplusg cmnd c0g eqid submrcl submss submcl cv subm0cl mulgnn0subcl ) ACIJKGHCLJZCMJZABCDNECOJZUCPZFUDPZACQUCACUFRUDA CGTHTUGSUEPZACUEUHUAUB $. + + submmulg.h $e |- H = ( G |`s S ) $. + submmulg.t $e |- .x. = ( .g ` H ) $. + $( A group multiple is the same if evaluated in a submonoid. (Contributed + by Mario Carneiro, 15-Jun-2015.) $) + submmulg $p |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> + ( N .xb X ) = ( N .x. X ) ) $= + ( cfv wcel co wceq cc0 c1 syl eqid adantr 3eqtr4d csubmnd cn0 w3a csn cxp + cn wa cplusg cseq simpl1 cmnd cress a1i submrcl ressplusgd seqeq2d fveq1d + eqidd cbs simpr wss submss 3ad2ant1 sseldd mulgnn syl2anc submbas eleqtrd + id simp3 c0g subm0 mulg0 oveq1d wo simp2 elnn0 sylib mpjaodan ) ADUAKZLZF + UBLZGALZUCZFUFLZFGBMZFGCMZNFONZWDWEUGZFDUHKZUFGUDUEZPUIZKZFEUHKZWKPUIZKZW + FWGWIFWLWOWIWJWNWKPWIWAWJWNNWAWBWCWEUJWAAWJDEVTUKEDAULMNWAIUMWAWJURWAVIAD + UNUOQUPUQWIWEGDUSKZLZWFWMNWDWEUTZWDWRWEWDAWQGWAWBAWQVAWCWQADWQRZVBVCWAWBW + CVJZVDZSWQWJWLBDFGWTWJRHWLRVEVFWIWEGEUSKZLZWGWPNWSWDXDWEWDGAXCXAWAWBAXCNW + CAEDIVGVCVHZSXCWNWOCEFGXCRZWNRJWORVEVFTWDWHUGZOGBMZOGCMZWFWGXGDVKKZEVKKZX + HXIXGWAXJXKNWAWBWCWHUJAEDXJIXJRZVLQXGWRXHXJNWDWRWHXBSWQBDGXJWTXLHVMQXGXDX + IXKNWDXDWHXESXCCEGXKXFXKRJVMQTXGFOGBWDWHUTZVNXGFOGCXMVNTWDWBWEWHVOWAWBWCV + PFVQVRVS $. $} @@ -155954,6 +155973,150 @@ by a normal subgroup (resp. two-sided ideal). (Contributed by Mario FGIUFCCAJKOPUGQRGBUODUEUHASUIIBUOEUEUHATUIUJUMABCDEFGHIJKLMNOPQRSTUKUL $. $} + ${ + $d .x. f $. $d .x. j w $. $d A f k x $. $d B f k x $. $d B j k w $. + $d G f k x $. $d G j k w $. $d M j k w $. $d N k w $. $d X f k x $. + $d X j k w $. + gsumconst.b $e |- B = ( Base ` G ) $. + gsumconst.m $e |- .x. = ( .g ` G ) $. + $( Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) + (Revised by Jim Kingdon, 6-Sep-2025.) $) + gsumfzconst $p |- ( ( G e. Mnd /\ N e. ( ZZ>= ` M ) /\ X e. B ) -> + ( G gsum ( k e. ( M ... N ) |-> X ) ) = ( ( ( N - M ) + 1 ) .x. X ) ) $= + ( wcel cfv cfz co cgsu cmin c1 caddc wceq wi oveq1d vw vj cmnd cuz w3a wa + simp2 3simpb cv oveq2 mpteq1d oveq2d oveq1 eqeq12d imbi2d cz simplr mulg1 + cmpt syl cc0 zcn subidd 0p1e1 eqtrdi adantl cplusg cseq eqid uzid simpllr + simpll fmpttd gsumval2 cvv simpr cfn fzfigd mptexd plusgslid slotex seq1g + syl3anc eqidd elfz3 fvmptd3 3eqtrd 3eqtr4rd expcom wss fzssp1 a1i resmptd + cres eqtrd peano2uz eluzfz2 oveq12d simplll eluzel2 wf adantr gsumsplit1r + 3syl cn uznn0sub nn0p1nn mulgnnp1 syl2anc 3eqtr4d cneg eluzelcn zcnd 1cnd + cn0 negcld add32d negsubd addcld 3eqtr3d ex a2d uzind4 sylc ) DUCJZFEUDKZ + JZGAJZUEYGYEYHUFZDCEFLMZGUSZNMZFEOMZPQMZGBMZRZYEYGYHUGYEYGYHUHYIDCEUAUIZL + MZGUSZNMZYQEOMZPQMZGBMZRZSYIDCEELMZGUSZNMZEEOMZPQMZGBMZRZSYIDCEUBUIZLMZGU + SZNMZUULEOMZPQMZGBMZRZSYIDCEUULPQMZLMZGUSZNMZUUTEOMZPQMZGBMZRZSYIYPSUAUBE + FYQERZUUDUUKYIUVHYTUUGUUCUUJUVHYSUUFDNUVHCYRUUEGYQEELUJUKULUVHUUBUUIGBUVH + UUAUUHPQYQEEOUMTTUNUOYQUULRZUUDUUSYIUVIYTUUOUUCUURUVIYSUUNDNUVICYRUUMGYQU + ULELUJUKULUVIUUBUUQGBUVIUUAUUPPQYQUULEOUMTTUNUOYQUUTRZUUDUVGYIUVJYTUVCUUC + UVFUVJYSUVBDNUVJCYRUVAGYQUUTELUJUKULUVJUUBUVEGBUVJUUAUVDPQYQUUTEOUMTTUNUO + YQFRZUUDYPYIUVKYTYLUUCYOUVKYSYKDNUVKCYRYJGYQFELUJUKULUVKUUBYNGBUVKUUAYMPQ + YQFEOUMTTUNUOYIEUPJZUUKYIUVLUFZPGBMZGUUJUUGUVMYHUVNGRYEYHUVLUQZABDGHIURUT + UVLUUJUVNRYIUVLUUIPGBUVLUUIVAPQMPUVLUUHVAPQUVLEEVBVCTVDVETVFUVMUUGEDVGKZU + UFEVHKZEUUFKZGUVMAUVPUUFDEEUCHUVPVIZYEYHUVLVLZUVLEYFJYIEVJVFUVMCUUEGAYEYH + UVLCUIZUUEJVKVMVNUVMUVLUUFVOJUVPVOJZUVQUVRRYIUVLVPZUVMCUUEGVQUVMEEUWCUWCV + RVSUVMYEUWBUVTDVGUCVTWAUTUVPUUFEVOVOWBWCUVMCEGGUUEUUFAUUFVIUWAERGWDUVLEUU + EJYIEWEVFUVOWFWGWHWIUULYFJZYIUUSUVGYIUWDUUSUVGSYIUWDUFZUUSUVGUWEUUSUFZUVC + UUQPQMZGBMZUVFUWFDUVBUUMWNZNMZUUTUVBKZUVPMUURGUVPMZUVCUWHUWFUWJUURUWKGUVP + UWFUWJUUOUURUWFUWIUUNDNUWFCUVAUUMGUUMUVAWJUWFEUULWKWLWMULUWEUUSVPWOUWFCUU + TGGUVAUVBAUVBVIUWAUUTRGWDUWFUWDUUTYFJUUTUVAJYIUWDUUSUQZEUULWPEUUTWQXDYEYH + UWDUUSVKZWFWRUWFAUVPUVBDEUULUCHUVSYEYHUWDUUSWSUWFUWDUVLUWMEUULWTZUTUWMUWE + UVAAUVBXAUUSUWECUVAGAYEYHUWDUWAUVAJVKVMXBXCUWFUUQXEJZYHUWHUWLRUWFUWDUUPXO + JUWPUWMEUULXFUUPXGXDUWNAUVPBDUUQGHIUVSXHXIXJUWFUWDUWHUVFRUWMUWDUWGUVEGBUW + DUUQUVDPQUWDUULEXKZQMZPQMUUTUWQQMUUQUVDUWDUULUWQPEUULXLZUWDEUWDEUWOXMZXPU + WDXNZXQUWDUWRUUPPQUWDUULEUWSUWTXRTUWDUUTEUWDUULPUWSUXAXSUWTXRXTTTUTWOYAWI + YBYCYD $. + $} + + ${ + $d k l N $. $d k l M $. $d l B $. $d l G $. $d l X $. + gsumconstf.k $e |- F/_ k X $. + gsumconstf.b $e |- B = ( Base ` G ) $. + gsumconstf.m $e |- .x. = ( .g ` G ) $. + $( Sum of a constant series. (Contributed by Thierry Arnoux, + 5-Jul-2017.) $) + gsumfzconstf $p |- ( ( G e. Mnd /\ N e. ( ZZ>= ` M ) /\ X e. B ) -> + ( G gsum ( k e. ( M ... N ) |-> X ) ) = ( ( ( N - M ) + 1 ) .x. X ) ) $= + ( vl cmnd wcel cuz cfv w3a cfz co cmpt cgsu cmin c1 caddc nfcv weq cbvmpt + eqidd oveq2i gsumfzconst eqtrid ) DLMFENOMGAMPDCEFQRZGSZTRDKUKGSZTRFEUARU + BUCRGBRULUMDTCKUKGGKGUDHCKUEGUGUFUHABKDEFGIJUIUJ $. + $} + + ${ + $d B x y $. $d F x y $. $d G x y $. $d H x y $. $d K x y $. + $d M x y $. $d N x y $. $d ph x y $. + gsummhm.b $e |- B = ( Base ` G ) $. + gsummhm.z $e |- .0. = ( 0g ` G ) $. + gsummhm.g $e |- ( ph -> G e. CMnd ) $. + gsummhm.h $e |- ( ph -> H e. Mnd ) $. + gsummhm.m $e |- ( ph -> M e. ZZ ) $. + gsummhm.n $e |- ( ph -> N e. ZZ ) $. + gsummhm.k $e |- ( ph -> K e. ( G MndHom H ) ) $. + gsummhm.f $e |- ( ph -> F : ( M ... N ) --> B ) $. + $( Apply a monoid homomorphism to a group sum. (Contributed by Mario + Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim + Kingdon, 8-Sep-2025.) $) + gsumfzmhm $p |- ( ph -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) $= + ( cfv wcel adantr vx vy clt wbr ccom cgsu co wceq wn wa c0g cmhm eqid syl + mhm0 cplusg cseq cif ccmn gsumfzval simpr iftrued eqtrd fveq2d cbs wf cfz + cmnd mhmf fco syl2anc 3eqtr4rd cvv cv cmnmndd simprl simprr mndcl syl3anc + adantlr ffvelcdmda cz cle cuz zred nltled eluz2 syl3anbrc ad2antrr mhmlin + fvco3 eqcomd cfn fzfigd fexd coexg plusgslid slotex seqhomog iffalsed wdc + wo zdclt exmiddc mpjaodan ) AHGUCUDZEFCUEZUFUGZDCUFUGZFRZUHXFUIZAXFUJZIFR + ZEUKRZXJXHAXMXNUHZXFAFDEULUGZSZXOPDEFXNIKXNUMZUOUNTXLXIIFXLXIXFIHDUPRZCGU + QRZURZIAXIYAUHZXFABXSCDGHUSIJKXSUMZLNOQUTZTXLXFIXTAXFVAZVBVCVDXLXHXFXNHEU + PRZXGGUQRZURZXNAXHYHUHZXFAEVERZYFXGEGHVHXNYJUMZXRYFUMZMNOABYJFVFZGHVGUGZB + CVFZYNYJXGVFAXQYMPBYJDEFJYKVIUNQYNBYJFCVJVKUTZTXLXFXNYGYEVBVCVLAXKUJZXTFR + YGXJXHYQUAUBXSYFBCXGFGHVMVMVMVMAUAVNZBSZUBVNZBSZUJZYRYTXSUGZBSZXKAUUBUJDV + HSZYSUUAUUDAUUEUUBADLVOTAYSUUAVPAYSUUAVQBXSDYRYTJYCVRVSVTAYRYNSZYRCRZBSXK + AYNBYRCQWAVTYQGWBSZHWBSZGHWCUDHGWDRSAUUHXKNTZAUUIXKOTZYQGHYQGUUJWEYQHUUKW + EAXKVAZWFGHWGWHYQUUBUJXQYSUUAUUCFRYRFRYTFRYFUGUHAXQXKUUBPWIYQYSUUAVPYQYSU + UAVQBXSYFDEFYRYTJYCYLWJVSYQUUFUJZYRXGRZUUGFRZUUMYOUUFUUNUUOUHAYOXKUUFQWIY + QUUFVAYNBYRFCWKVKWLACVMSZXKAYNBWMCQAGHNOWNWOZTAXGVMSZXKAXQUUPUURPUUQFCXPV + MWPVKTAXSVMSZXKADUSSUUSLDUPUSWQWRUNTAYFVMSZXKAEVHSUUTMEUPVHWQWRUNTWSYQXIX + TFYQXIYAXTAYBXKYDTYQXFIXTUULWTVCVDYQXHYHYGAYIXKYPTYQXFXNYGUULWTVCVLAXFXAZ + XFXKXBAUUIUUHUVAONHGXCVKXFXDUNXE $. + $} + + ${ + $d k x N $. $d k x M $. $d k x B $. $d k C $. $d x D $. $d x E $. + $d k ph $. $d x G $. $d x H $. $d x X $. + gsummhm2.b $e |- B = ( Base ` G ) $. + gsummhm2.z $e |- .0. = ( 0g ` G ) $. + gsummhm2.g $e |- ( ph -> G e. CMnd ) $. + gsummhm2.h $e |- ( ph -> H e. Mnd ) $. + gsumfzmhm2.m $e |- ( ph -> M e. ZZ ) $. + gsumfzmhm2.n $e |- ( ph -> N e. ZZ ) $. + gsummhm2.k $e |- ( ph -> ( x e. B |-> C ) e. ( G MndHom H ) ) $. + gsumfzmhm2.f $e |- ( ( ph /\ k e. ( M ... N ) ) -> X e. B ) $. + gsummhm2.1 $e |- ( x = X -> C = D ) $. + gsumfzmhm2.2 $e |- ( x = ( G gsum ( k e. ( M ... N ) |-> X ) ) + -> C = E ) $. + $( Apply a group homomorphism to a group sum, mapping version with implicit + substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by + AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.) $) + gsumfzmhm2 $p |- ( ph -> ( H gsum ( k e. ( M ... N ) |-> D ) ) = E ) $= + ( cmpt cfz co ccom cgsu cfv fmpttd gsumfzmhm eqidd fmptco oveq2d cbs eqid + cmnmndd gsumfzcl wcel cv wceq eleq1d wf wral cmhm mhmf syl sylibr rspcdva + fmpt fvmptd3 3eqtr3d ) AIBCDUDZFJKUEUFZLUDZUGZUHUFHVOUHUFZVMUIIFVNEUDZUHU + FGACVOHIVMJKMNOPQRSTAFVNLCUAUJZUKAVPVRIUHAFBVNCLDEVOVMUAAVOULAVMULUBUMUNA + BVQDGCVMIUOUIZVMUPZUCACVOHJKMNOAHPUQRSVSURZADVTUSZGVTUSBCVQBUTVQVADGVTUCV + BACVTVMVCZWCBCVDAVMHIVEUFUSWDTCVTHIVMNVTUPVFVGBCVTDVMWAVJVHWBVIVKVL $. + $} + + ${ + $d k M $. + gsumsnd.b $e |- B = ( Base ` G ) $. + gsumsnd.g $e |- ( ph -> G e. Mnd ) $. + gsumfzsnd.m $e |- ( ph -> M e. ZZ ) $. + gsumsnd.c $e |- ( ph -> C e. B ) $. + gsumsnd.s $e |- ( ( ph /\ k = M ) -> A = C ) $. + ${ + gsumsnfd.p $e |- F/ k ph $. + gsumsnfd.c $e |- F/_ k C $. + $( Group sum of a singleton, deduction form, using bound-variable + hypotheses instead of distinct variable conditions. (Contributed by + Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, + 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) $) + gsumfzsnfd $p |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) $= + ( cmpt cgsu co c1 wcel wceq csn caddc cmg cfv cfz elsni sylan2 mpteq2da + cmin cv oveq2d cz fzsn syl mpteq1d cmnd uzidd eqid gsumfzconstf syl3anc + cuz 3eqtr2d cc0 zcnd subidd oveq1d 0p1e1 eqtrdi mulg1 3eqtrd ) AFEGUAZB + OZPQZGGUIQZRUBQZDFUCUDZQZRDVPQZDAVMFEVKDOZPQFEGGUEQZDOZPQZVQAVLVSFPAEVK + BDMEUJZVKSAWCGTBDTWCGUFLUGUHUKAWAVSFPAEVTVKDAGULSVTVKTJGUMUNUOUKAFUPSGG + VAUDSDCSZWBVQTIAGJUQKCVPEFGGDNHVPURZUSUTVBAVORDVPAVOVCRUBQRAVNVCRUBAGAG + JVDVEVFVGVHVFAWDVRDTKCVPFDHWEVIUNVJ $. + $} + $} + $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# @@ -165194,6 +165357,15 @@ left ideal which is also a right ideal (or a left ideal over the opposite sseqtrri strslfv ax-mp ) ABCADEFGHADEBIINJKLMOEFAKZPOQFRKZULOSFTKZUAZDUMULU NUBUOUOOUCFUDKPZUEDUOUPUFUGUIUHUJUK $. + ${ + $d x y $. + $( The addition operation of the field of complex numbers. Version of + ~ cnfldadd using maps-to notation. (Contributed by GG, 31-Mar-2025.) $) + mpocnfldadd $p |- ( x e. CC , y e. CC |-> ( x + y ) ) = ( +g ` CCfld ) $= + ( caddc cc cv cmpo ccnfld cplusg cfv cxp wfn wceq ax-addf ffn fnovim mp2b + co wf cnfldadd eqtr3i ) CABDDAEBECQFZGHIDDJZDCRCUBKCUALMUBDCNABDDCOPST $. + $} + $( The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) $) @@ -165203,6 +165375,16 @@ left ideal which is also a right ideal (or a left ideal over the opposite ccj cun strslfv ax-mp ) ABCADEFGHADEBIIJKLMNOEFALZPOQFRLZOSFTLZULUAZDUMUNUL UBUOUOOUCFUHLPZUIDUOUPUDUEUFUGUJUK $. + ${ + $d x y $. + $( The multiplication operation of the field of complex numbers. Version + of ~ cnfldmul using maps-to notation. (Contributed by GG, + 31-Mar-2025.) $) + mpocnfldmul $p |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( .r ` CCfld ) $= + ( cmul cc cv co cmpo ccnfld cmulr cfv cxp wf wfn wceq ax-mulf fnovim mp2b + ffn cnfldmul eqtr3i ) CABDDAEBECFGZHIJDDKZDCLCUBMCUANOUBDCRABDDCPQST $. + $} + $( The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) $) @@ -165385,6 +165567,105 @@ left ideal which is also a right ideal (or a left ideal over the opposite UDURACUEEFZUQJAFZUTAFUOVCUQACUFTVBUOVDUQACJUHUGTAUSCUPJUSUIUJUKULUMUN $. $} + ${ + $d M k $. $d N k $. + gsumfzfsumlem0.m $e |- ( ph -> M e. ZZ ) $. + gsumfzfsumlem0.n $e |- ( ph -> N e. ZZ ) $. + gsumfzfsumlem0.lt $e |- ( ph -> N < M ) $. + $( Lemma for ~ gsumfzfsum . The case where the sum is empty. (Contributed + by Jim Kingdon, 9-Sep-2025.) $) + gsumfzfsumlem0 $p |- ( ph -> ( CCfld gsum ( k e. ( M ... N ) |-> B ) ) + = sum_ k e. ( M ... N ) B ) $= + ( ccnfld c0 cgsu co cc0 cmpt csu crg wcel wceq cz eqtrdi cfz cnring ax-mp + cnfld0 gsum0g clt wbr wb fzn syl2anc mpbid mpteq1d oveq2d sumeq1d 3eqtr4a + mpt0 sum0 ) AIJKLZMICDEUALZBNZKLUSBCOZIPQURMRUBIPMUDUEUCAUTJIKAUTCJBNJACU + SJBAEDUFUGZUSJRZHADSQESQVBVCUHFGDEUIUJUKZULCBUPTUMAVAJBCOMAUSJBCVDUNBCUQT + UO $. + $} + + ${ + $d B j w $. $d B j x y $. $d M j k w $. $d M j k x y $. $d N j k w $. + $d j k ph w $. + gsumfzfsumlemm.n $e |- ( ph -> N e. ( ZZ>= ` M ) ) $. + gsumfzfsumlemm.b $e |- ( ( ph /\ k e. ( M ... N ) ) -> B e. CC ) $. + $( Lemma for ~ gsumfzfsum . The case where the sum is inhabited. + (Contributed by Jim Kingdon, 9-Sep-2025.) $) + gsumfzfsumlemm $p |- ( ph -> ( CCfld gsum ( k e. ( M ... N ) |-> B ) ) + = sum_ k e. ( M ... N ) B ) $= + ( cfz co wcel ccnfld cmpt cgsu csu wceq syl wi caddc cc adantl vw cuz cfv + vj vx vy eluzfz2 cv c1 mpteq1d oveq2d sumeq1d eqeq12d imbi2d csn cnfldbas + oveq2 csb cmnd cnring ringmnd mp1i eluzel2 wral eluzfz1 ralrimiva nfcsb1v + crg cz nfel1 csbeq1a eleq1d rspc sylc nfv gsumfzsnfd sumsns syl2anc eqtrd + fzsn 3eqtr4d a1i cfzo wa simpr oveq1d cres cmpo mpocnfldadd adantr simpll + elfzouz elfzoel2 ad2antlr elfzelz cle wbr elfzle1 elfzoelz peano2zd letrd + zred elfzle2 fzofzp1 elfzd fmpttd gsumsplit1r wss fzssp1 resmpt rspcsbela + peano2uz syl2anr eqid fvmpts oveq12d cnfld0 fzelp1 sylan2 gsumfzcl addcld + cc0 oveq1 ovmpog syl3anc 3eqtrd cun fzsuc fzfigd wn fsumsplitsn ex expcom + fzp1nel a2d fzind2 mpcom ) EDEHIZJZAKCYRBLZMIZYRBCNZOZAEDUBUCZJZYSFDEUGPA + KCDUAUHZHIZBLZMIZUUGBCNZOZQAKCDDHIZBLZMIZUULBCNZOZQZAKCDUDUHZHIZBLZMIZUUS + BCNZOZQAKCDUURUIRIZHIZBLZMIZUVEBCNZOZQAUUCQUAUDEDEUUFDOZUUKUUPAUVJUUIUUNU + UJUUOUVJUUHUUMKMUVJCUUGUULBUUFDDHUQZUJUKUVJUUGUULBCUVKULUMUNUUFUUROZUUKUV + CAUVLUUIUVAUUJUVBUVLUUHUUTKMUVLCUUGUUSBUUFUURDHUQZUJUKUVLUUGUUSBCUVMULUMU + NUUFUVDOZUUKUVIAUVNUUIUVGUUJUVHUVNUUHUVFKMUVNCUUGUVEBUUFUVDDHUQZUJUKUVNUU + GUVEBCUVOULUMUNUUFEOZUUKUUCAUVPUUIUUAUUJUUBUVPUUHYTKMUVPCUUGYRBUUFEDHUQZU + JUKUVPUUGYRBCUVQULUMUNUUQUUEAKCDUOZBLZMICDBURZUUNUUOABSUVTCKDUPKVHJZKUSJZ + AUTKVAZVBAUUEDVIJZFDEVCPZADYRJZBSJZCYRVDZUVTSJZAUUEUWFFDEVEPAUWGCYRGVFZUW + GUWICDYRCUVTSCDBVGZVJCUHZDOZBUVTSCDBVKZVLVMVNZUWMBUVTOAUWNTACVOUWKVPAUUMU + VSKMACUULUVRBAUWDUULUVROUWEDVTZPUJUKAUUOUVRBCNZUVTAUWDUUOUWQOUWEUWDUULUVR + BCUWPULPAUWDUWIUWQUVTOUWEUWOBCDVIVQVRVSWAWBUURDEWCIJZAUVCUVIAUWRUVCUVIQAU + WRWDZUVCUVIUWSUVCWDZUVACUVDBURZRIZUVBUXARIZUVGUVHUWTUVAUVBUXARUWSUVCWEWFU + WSUVGUXBOUVCUWSUVGKUVFUUSWGZMIZUVDUVFUCZUEUFSSUEUHZUFUHZRIZWHZIUVAUXAUXJI + ZUXBUWSSUXJUVFKDUURVHUPUEUFWIUWAUWSUTWBAUWDUWRUWEWJZUWRUURUUDJZAUURDEWLZT + ZUWSCUVEBSUWSUWLUVEJZWDZAUWLYRJUWGAUWRUXPWKZUXQUWLDEUXQAUWDUXRUWEPUWREVIJ + AUXPUURDEWMWNZUXPUWLVIJUWSUWLDUVDWOTZUXPDUWLWPWQUWSUWLDUVDWRTUXQUWLUVDEUX + QUWLUXTXBUXQUVDUXQUURUWRUURVIJZAUXPUURDEWSZWNWTXBUXQEUXSXBUXPUWLUVDWPWQUW + SUWLDUVDXCTUXQUVDYRJZUVDEWPWQUWRUYCAUXPDEUURXDZWNUVDDEXCPXAXEGVRZXFXGUWSU + XEUVAUXFUXAUXJUWSUXDUUTKMUUSUVEXHUXDUUTOUWSDUURXICUVEUUSBXJVBUKUWSUVDUVEJ + ZUXASJZUXFUXAOUWSUVDUUDJZUYFUWRUYHAUWRUXMUYHUXNDUURXLPTDUVDUGPUWRUYCUWHUY + GAUYDUWJCUVDYRBSXKXMZCUVDBUVEUVFSUVFXNXOVRXPUWSUVASJUYGUXBSJUXKUXBOUWSSUU + TKDUURYBUPXQUWAUWBUWSUTUWCVBUXLUWRUYAAUYBTZUWSCUUSBSUWLUUSJUWSUXPUWGUWLDU + URXRUYEXSZXFXTZUYIUWSUVAUXAUYLUYIYAUEUFUVAUXASSUXIUXBUXJUVAUXHRISUXGUVAUX + HRYCUXHUXAUVARUQUXJXNYDYEYFWJUWSUVHUXCOUVCUWSUVHUUSUVDUOYGZBCNUXCUWSUVEUY + MBCUWSUXMUVEUYMOUXODUURYHPULUWSUUSUVDBUXACVIUWSCVOCUVDBVGUWSDUURUXLUYJYIU + WSUURUYJWTUVDUUSJYJUWSDUURYNWBUYKCUVDBVKUYIYKVSWJWAYLYMYOYPYQ $. + $} + + ${ + $d M k $. $d N k $. $d ph k $. + gsumfzfsum.m $e |- ( ph -> M e. ZZ ) $. + gsumfzfsum.n $e |- ( ph -> N e. ZZ ) $. + gsumfzfsum.2 $e |- ( ( ph /\ k e. ( M ... N ) ) -> B e. CC ) $. + $( Relate a group sum on ` CCfld ` to a finite sum on the complex numbers. + (Contributed by Mario Carneiro, 28-Dec-2014.) $) + gsumfzfsum $p |- ( ph -> ( CCfld gsum ( k e. ( M ... N ) |-> B ) ) + = sum_ k e. ( M ... N ) B ) $= + ( clt wbr ccnfld cfz co cmpt wa cz wcel adantr simpr zred cgsu csu wn cle + wceq gsumfzfsumlem0 cuz cfv nltled eluz2 syl3anbrc adantlr gsumfzfsumlemm + cv cc wdc wo zdclt syl2anc exmiddc syl mpjaodan ) AEDIJZKCDELMZBNUAMVDBCU + BUEVCUCZAVCOBCDEADPQZVCFRAEPQZVCGRAVCSUFAVEOZBCDEVHVFVGDEUDJEDUGUHQAVFVEF + RZAVGVEGRZVHDEVHDVITVHEVJTAVESUIDEUJUKACUNVDQBUOQVEHULUMAVCUPZVCVEUQAVGVF + VKGFEDURUSVCUTVAVB $. + $} + + ${ + $d u v x y z $. + $( The invertible complex numbers are exactly those apart from zero. This + is ~ recapb but expressed in terms of ` CCfld ` . (Contributed by Jim + Kingdon, 11-Sep-2025.) $) + cnfldui $p |- { z e. CC | z =//= 0 } = ( Unit ` CCfld ) $= + ( vy vu vv ccnfld cfv cv cc0 cap wbr cc wcel wa cmul co c1 wceq eqid wtru + a1i cui crab wrex recapb pm5.32i breq1 elrab cdsr cmpo ccrg cncrng cnfld1 + vx wb crngunit ax-mp cbs cnfldbas eqidd csrg crg cnring cmulr mpocnfldmul + ringsrg dvdsrd mptru simpr simpl mulcld oveq1 oveq2 ovmpog syl3anc mulcom + eqtr4d eqeq1d rexbidva 3bitri 3bitr4ri eqriv eqcomi ) EUAFZAGZHIJZAKUBZUM + WCWFUMGZKLZWGHIJZMWHWGBGZNOZPQZBKUCZMZWGWFLWGWCLZWHWIWMBWGUDUEWEWIAWGKWDW + GHIUFUGWOWGPEUHFZJZWHWJWGCDKKCGZDGZNOZUIZOZPQZBKUCZMZWNEUJLWOWQUNUKWPEWCP + WGWCRULWPRUOUPWQXEUNSBKWPEXAWGPKEUQFQSURTSWPUSEUTLZSEVALXFVBEVEUPTXAEVCFQ + SCDVDTVFVGWHXDWMWHXCWLBKWHWJKLZMZXBWKPXHXBWJWGNOZWKXHXGWHXIKLXBXIQWHXGVHZ + WHXGVIZXHWJWGXJXKVJCDWJWGKKWTXIXAWJWSNOKWRWJWSNVKWSWGWJNVLXARVMVNWGWJVOVP + VQVRUEVSVTWAWB $. + $} + $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -165533,6 +165814,39 @@ According to Wikipedia ("Integer", 25-May-2019, ( ccnfld crg wcel cz cvv cmgp cfv cress co czring wceq cnring df-zring eqid zex mgpress mp2an ) ABCDECAFGZDHIJFGKLODAJRBEMRNPQ $. + ${ + $d A r s u v x z $. $d U u v $. + expghm.m $e |- M = ( mulGrp ` CCfld ) $. + expghmap.u $e |- U = ( M |`s { z e. CC | z =//= 0 } ) $. + $( Exponentiation is a group homomorphism from addition to multiplication. + (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, + 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.) $) + expghmap $p |- ( ( A e. CC /\ A =//= 0 ) -> + ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) ) $= + ( vu vv cc wcel wa cz cv cexp co cfv cmul wceq wtru cc0 cap wbr crab cmpt + vr vs caddc cmpo wral czring cghm expclzaplem 3expa fmpttd expaddzap eqid + oveq2 zaddcl adantl simpll simplr expclzapd fvmptd3 simprl simprr oveq12d + wf 3eqtr4d ralrimivva anassrs eqeltrd simpr mulcld oveq1 syl3anc ralbidva + ovmpog eqeq2d mpbird cgrp zringgrp ccnfld crg cnring cnfldui cress oveq1i + cmgp eqtri unitgrp ax-mp zringbas cbs cvv a1i cnfldbas mgpbasg mp1i mgpex + pm3.2i wss apsscn ressbas2d mptru zringplusg cplusg mpocnfldmul mgpplusgg + cnex rabex ressplusgd isghm mpbiran sylanbrc ) CJKZCUAUBUCZLZMBNUAUBUCZBJ + UDZAMCANZOPZUEZVHZHNZINZUHPZYCQZYEYCQZYFYCQZUFUGJJUFNZUGNZRPZUIZPZSZIMUJZ + HMUJZYCUKDULPKZXRAMYBXTXPXQYAMKYBXTKBCYAUMUNUOXRYRYHYIYJRPZSZIMUJZHMUJXRU + UAHIMMXRYEMKZYFMKZLZLZCYGOPZCYEOPZCYFOPZRPYHYTCYEYFUPUUFAYGYBUUGMYCJYCUQZ + YAYGCOURUUEYGMKXRYEYFUSUTZUUFCYGXPXQUUEVAZXPXQUUEVBZUUKVCVDUUFYIUUHYJUUIR + UUFAYEYBUUHMYCJUUJYAYECOURZXRUUCUUDVEZUUFCYEUULUUMUUOVCZVDUUFAYFYBUUIMYCJ + UUJYAYFCOURZXRUUCUUDVFZUUFCYFUULUUMUURVCZVDVGVIVJXRYQUUBHMXRUUCLZYPUUAIMU + UTUUDLZYOYTYHUVAYIJKYJJKYTJKYOYTSUVAYIUUHJUVAAYEYBUUHMYCJUUJUUNXRUUCUUDVB + XRUUCUUDUUHJKUUPVKZVDUVBVLZUVAYJUUIJUVAAYFYBUUIMYCJUUJUUQUUTUUDVMXRUUCUUD + UUIJKUUSVKZVDUVDVLZUVAYIYJUVCUVEVNUFUGYIYJJJYMYTYNYIYLRPJYKYIYLRVOYLYJYIR + URYNUQVRVPVSVQVQVTYSUKWAKZDWAKZLYDYRLUVFUVGWBWCWDKZUVGWEWCXTDBWFDEXTWGPZW + CWIQZXTWGPGEUVJXTWGFWHWJWKWLXAIHUHYNUKDYCMXTWMXTDWNQSTXTJDEWODUVISTGWPZUV + HJEWNQSTWEJWCEWDFWQWRWSUVHEWOKTWEWCEWDFWTWSZXTJXBTBJUAXCWPXDXEXFYNDXGQSTX + TYNEDWOWOUVKUVHYNEXGQSTWEWCYNEWDFUFUGXHXIWSXTWOKTXSBJXJXKWPUVLXLXEXMXNXO + $. + $} + ${ $d n x y B $. $d f x y F $. $d f n x y R $. $d n .x. $. $d n x y .1. $. mulgghm2.m $e |- .x. = ( .g ` R ) $. @@ -183322,6 +183636,96 @@ mathematician Ptolemy (Claudius Ptolemaeus). This particular version is UBUYAWLABUXJUXTVUSVXQXFAVUSVUBUYAUXJVVIXHWKUXAVVIUXBWUBVUSUXPKUYCVYGU YBUXOVVGVYJWUCVXOUXFYEUXG $. $} + + ${ + $( Lemma for Eisenstein's lemma. (Contributed by Mario Carneiro, + 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) $) + lgseisenlem4 $p |- ( ph -> ( ( Q ^ ( ( P - 1 ) / 2 ) ) mod P ) = + ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) + ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) mod P ) ) $= + ( vk vz c1 cmin co c2 cdiv cexp cmo cneg cfz cv cmul cfl cfv csu wceq + cdvds wbr cmpt cgsu czring cz zringbas zring0 cabl wcel ccmn zringabl + cc0 ablcmn mp1i ccrg cn0 cprime csn eldifad prmnn nnnn0d cn nnzd cmhm + syl cbs wf crg eqid m1expcl adantl ccnfld zringmpg cap csubmnd neg1cn + cress cc neg1ap0 mp2an ax-mp zsubrg sylancr syl2anc gausslemma2dlem0a + wb fmpttd cq adantr nnmulcl fveq2d cof ffvelcdmd mgpbasg eleqtrd prmz + oveq2 zmulcld zexpcl oveqd oveq2d cfn eqidd syl3anc caddc eqtrid zcnd + nnq nncnd eqtrd 3eqtrd a1i syl22anc wn 1cnd cuz oveq1d 3eqtr3d eqtr3d + 1exp mpbid cmg zncrng crngmgp cmnmndd 1zzd cdif oddprm ccom crngringd + crh zrhrhm rhmf cofmpt cmgp rhmmhm crab cghm expghmap ghmmhm unitsubm + cnring cnfldui resmhm2 crn csubrg subrgsubm frnd resmhm2b mpbii mhmco + wss eqeltrrd wa znq 2nn elfznn zq qmulcl flqcld gsumfzmhm2 cur cplusg + cmulr neg1z zmodcld eqeltrid gsumfzmptfidmadd2 mgpplusgg ofeqd fzfigd + 3eqtr4d offval2 zringmulr rhmmul clt nnmulcld nngt0d modqval div23apd + nnap0d pncan3d 2cnd mul12d expaddzap expmulzap eldifsni necomd neneqd + nn0zd wne 2z uzid dvdsprm mtbird oexpneg negeqd 2nn0 expmuld neg1sqe1 + syl2an mulassd mullidd mpteq2dva lgseisenlem3 3eqtr3rd feq3d gsumfzcl + oveq1i c0g eleqtrrd ringridm cmnd nnuz eleqtrdi gsumfzconst zringring + npcand mhmmulg submmulg cnfldexp subrgsubg subgsubm df-zring gsumsubm + csubg gsumfzfsum fsumzcl zndvds moddvds mpbird ) AEDUCUDUEUFUGUEZUHUE + ZDUIUEUCUJZUCVUJUKUEZEDUGUEZUFBULZUMUEZUMUEZUNUOZBUPZUHUEZDUIUEUQZDVU + KVUTUDUEURUSZAVUKIUOZVUTIUOZUQZVVBAHBVUMVULVURUHUEZIUOZUTZVAUEZVULVBB + VUMVURUTZVAUEZUHUEZIUOZVVCVVDAUAVCVULUAULZUHUEZIUOZVVGBVVMVBHUCVUJVUR + VJVDVEVBVFVGVBVHVGAVIVBVKVLAHAKVMVGZHVHVGADVNVGZVVQADVOVGZVVRADVOUFVP + ZLVQZVVSDDVRZVSWCDKRUUAWCZKHSUUBWCZUUCZAUUDZAVUJADVOVVTUUEVGZVUJVTVGL + DUUFWCZWAZAIUAVCVVOUTZUUGZUAVCVVPUTVBHWBUEZAUAVCVVOVCKWDUOZIAIVBKUUIU + EVGZVCVWMIWEZAKWFVGZVWNAKVWCUUHZKITUUJWCZVCVWMVBKIVDVWMWGZUUKWCZVVNVC + VGVVOVCVGAVVNWHWIZUULAIWJUUMUOZVCWOUEZHWBUEVGZVWJVBVXCWBUEVGZVWKVWLVG + AVWNVXDVWRVBKIVXCHWKSUUNWCZAVWJVBVXBWBUEVGZVXEVWJVBVXBUBULVJWLUSUBWPU + UOZWOUEZWBUEVGZVXHVXBWMUOZVGZVXGVWJVBVXIUUPUEVGZVXJVULWPVGZVULVJWLUSZ + VXMWNWQUAUBVULVXIVXBVXBWGZVXIWGZUUQWRVBVXIVWJUURWSWJWFVGVXLUUTWJVXHVX + BUBUVAVXPUUSWSVBVXBVXIVWJVXHVXQUVBWRAVCVXKVGZVWJUVCVCUVJVXGVXEXDVCWJU + VDUOVGZVXRWTVCWJVXBVXPUVEWSZAVCVCVWJAUAVCVVOVCVXAXEUVFVBVXBVXCVWJVCVX + CWGZUVGXAUVHVBVXCHIVWJUVIXBUVKAVUOVUMVGZUVLZVUQVYCVUNXFVGZVUPXFVGZVUQ + XFVGVYCEVCVGZDVTVGZVYDAVYFVYBAEAEMXCZWAXGAVYGVYBADLXCZXGZEDUVMXBVYCVU + PVCVGVYEVYCVUPVYCUFVTVGVUOVTVGZVUPVTVGUVNVYBVYKAVUOVUJUVOZWIZUFVUOXHX + AZWAZVUPUVPWCVUNVUPUVQXBUVRZVVNVURUQVVOVVFIVVNVURVULUHXOXIVVNVVKUQVVO + VVLIVVNVVKVULUHXOXIUVSAVVIKUVTUOZKUWBUOZUEZHBVUMEIUOZUTZVAUEZVVIVVCAH + VVHBVUMVULFUHUEZEUMUEZIUOZUTZVYRXJZUEZVAUEZVVIHWUFVAUEZVYRUEZWUBVYSAH + VVHWUFHUWAUOZXJZUEZVAUEVVIWUJWULUEWUIWUKABHWDUOZVVGWUEWULVVHHWUFUCVUJ + WUOWGZWULWGVWDVWFVWIVYCVVGVWMWUOVYCVCVWMVVFIAVWOVYBVWTXGZVYCVURVCVGZV + VFVCVGZVYPVURWHWCZXKZAVWMWUOUQZVYBAVVQWVBVWCVWMKHVMSVWSXLWCZXGZXMVYCW + UEVWMWUOVYCVCVWMWUDIWUQVYCWUCEVYCVULVCVGFVNVGWUCVCVGUWCVYCFEVUPUMUEZD + UIUEZVNOVYCWVEDVYCEVUPVYCEVOVGZVYFAWVGVYBAEVOVVTMVQZXGEXNZWCZVYOXPZVY + CVVSVYGAVVSVYBVWAXGZVWBWCZUWDUWEZVULFXQXAZWVJXPZXKZWVDXMVVHWGWUFWGUWF + AWUHWUNHVAAWUGWUMVVHWUFAVYRWULAVVQVYRWULUQVWCKVYRHVMSVYRWGZUWGWCZUWHX + RXSAVYRWULVVIWUJWVSXRUWJAWUHWUAHVAAWUHBVUMVVGWUEVYRUEZUTWUAABVUMVVGWU + EVYRVVHWUFXTVWMVWMAUCVUJVWFVWIUWIZWVAWVQAVVHYAAWUFYAUWKABVUMWVTVYTVYC + VVFWUDUMUEZIUOZWVTVYTVYCVWNWUSWUDVCVGWWCWVTUQAVWNVYBVWRXGWUTWVPVVFWUD + VBKUMVYRIVCVDUWLWVRUWMYBVYCWWBEIVYCVVFWUCUMUEZEUMUEUCEUMUEWWBEVYCWWDU + CEUMVYCVULDVURUMUEZFYCUEZUHUEZVULUFEVUOUMUEZUMUEZUHUEZWWDUCVYCWWFWWIV + ULUHVYCWWFWWEWVEWWEUDUEZYCUEWVEWWIVYCFWWKWWEYCVYCFWVEDWVEDUGUEZUNUOZU + MUEZUDUEZWWKVYCFWVFWWOOVYCWVEXFVGZDXFVGZVJDUWNUSWVFWWOUQVYCWVEVTVGWWP + VYCEVUPAEVTVGZVYBVYHXGVYNUWOWVEYFWCAWWQVYBAVYGWWQVYIDYFWCXGVYCDVYJUWP + WVEDUWQYBYDVYCWWNWWEWVEUDVYCWWMVURDUMVYCWWLVUQUNVYCEVUPDVYCEWVJYEZVYC + VUPVYNYGVYCDWVMYGVYCDWVMUWSUWRXIXSXSYHXSVYCWWEWVEVYCWWEVYCDVURVYCVVSD + VCVGZWVLDXNWCZVYPXPZYEVYCWVEWVKYEUWTVYCEUFVUOWWSVYCUXAVYCVUOVYMYGUXBY + IXSVYCWWGVULWWEUHUEZWUCUMUEZWWDVYCVXNVXOWWEVCVGFVCVGWWGWXDUQVXNVYCWNY + JZVXOVYCWQYJZWXBVYCFWVNUXHVULWWEFUXCYKVYCWXCVVFWUCUMVYCWXCVULDUHUEZVU + RUHUEZVVFVYCVXNVXOWWTWURWXCWXHUQWXEWXFWXAVYPVULDVURUXDYKVYCWXGVULVURU + HVYCWXGUCDUHUEZUJZVULVYCUCWPVGVYGUFDURUSZYLWXGWXJUQVYCYMWVMVYCWXKUFDU + QZAWXLYLVYBAUFDADUFAVWGDUFUXILDVOUFUXEWCUXFUXGXGVYCUFUFYNUOVGZVVSWXKW + XLXDUFVCVGWXMUXJUFUXKWSWVLDUFUXLXAUXMUCDUXNYBVYCWXIUCVYCWWTWXIUCUQWXA + DYRWCUXOYHYOYHYOYHVYCWWJVULUFUHUEZWWHUHUEZUCVYCVULUFWWHWXEVYCWWHAWWRV + YKWWHVTVGVYBVYHVYLEVUOXHUXSZVSUFVNVGVYCUXPYJUXQVYCWXOUCWWHUHUEZUCWXNU + CWWHUHUXRUYGVYCWWHVCVGWXQUCUQVYCWWHWXPWAWWHYRWCYDYHYPYOVYCVVFWUCEVYCV + VFWUTYEVYCWUCWVOYEWWSUXTVYCEWWSUYAYPXIYQUYBYHXSAWUJVYQVVIVYRABCDEFGHI + JKLMNOPQRSTUYCXSUYDAVWPVVIVWMVGVYSVVIUQVWQAVVIWUOVWMAWUOVVHHUCVUJHUYH + UOZWUPWXRWGVWEVWFVWIAVUMVWMVVHWEVUMWUOVVHWEABVUMVVGVWMWVAXEAVWMWUOVVH + VUMWVCUYEYSUYFWVCUYIVWMKVYRVYQVVIVWSWVRVYQWGUYJXBAWUBVUJUCUDUEUCYCUEZ + VYTHYTUOZUEZVUJVYTWXTUEZVVCAHUYKVGVUJUCYNUOZVGVYTWUOVGWUBWYAUQVWEAVUJ + VTWYCVWHUYLUYMAVYTVWMWUOAVCVWMEIVWTAWVGVYFWVHWVIWCZXKWVCXMWUOWXTBHUCV + UJVYTWUPWXTWGZUYNYBAWXSVUJVYTWXTAVUJUCAVUJVWHYGAYMUYPYOAVUJEVXCYTUOZU + EZIUOZWYBVVCAVXDVUJVNVGZVYFWYHWYBUQVXFAVUJVWHVSZWYDVCWYFWXTIVXCHVUJEV + BWFVGVCVXCWDUOUQUYOVCVBVXCWFWKVDXLWSWYFWGZWYEUYQYBAWYGVUKIAVUJEVXBYTU + OZUEZWYGVUKAVXRWYIVYFWYMWYGUQVXRAVXTYJWYJWYDVCWYLWYFVXBVXCVUJEWYLWGVY + AWYKUYRYBAEWPVGWYIWYMVUKUQAEWYDYEWYJEVUJUYSXBYQXIYQYIYPAVVLVUTIAVVKVU + SVULUHAWJVVJVAUEVVKVUSAVUMVCVVJWJVBXTWWAVCWJVUDUOVGZVCWJWMUOVGAVXSWYN + WTVCWJUYTWSVCWJVUAVLABVUMVURVCVYPXEVUBVUCAVURBUCVUJVWFVWIVYCVURVYPYEV + UEYQXSXIYPAVVRVUKVCVGZVUTVCVGZVVEVVBXDADVYIVSAVYFWYIWYOWYDWYJEVUJXQXB + ZAVUSVCVGWYPAVUMVURBWWAVYPVUFVUSWHWCZVUKVUTIDKRTVUGYBYSAVYGWYOWYPVVAV + VBXDVYIWYQWYRVUKVUTDVUHYBVUI $. + $} $} $} diff --git a/mmil.raw.html b/mmil.raw.html index ad394de6f..71837d915 100644 --- a/mmil.raw.html +++ b/mmil.raw.html @@ -11227,12 +11227,6 @@ hypotheses in deduction form - - submmulg - none - the set.mm proof uses ressplusg - - pwsmulg none @@ -11373,13 +11367,34 @@ - gsumsubmcl + gsumzsubmcl , gsumsubmcl ~ gsumfzsubmcl The group sum needs to be indexed by consecutive integers. Also, we don't need commutativity since the order is specified. + + gsumsubgcl + none + at least at present, just use ~ gsumfzsubmcl although it + wouldn't be hard to add a version for groups rather than monoids + + + + gsumzaddlem , gsumzadd , gsumadd + none + should be possible to prove versions indexed by + consecutive integers. + + + + gsummptfsadd + none + should be possible (for sums indexed by consecutive integers) + given a theorem similar to gsumadd + + gsummptfidmadd ~ gsumfzmptfidmadd @@ -11394,6 +11409,85 @@ consecutive integers. + + gsumzsplit , gsumsplit , gsumsplit2 , gsummptfidmsplit , + gsummptfidmsplitres + none + should be possible to prove versions indexed by + consecutive integers (compare with gsummptfzsplit and gsummptfzsplitl + ). + + + + gsummptfzsplit , gsummptfzsplitl + none + apparently these would be provable as stated + + + + gsumconst + ~ gsumfzconst + requires that the series is indexed by consecutive integers + and has an element (if the latter condition is an issue, detect it + with something like ~ fzn and handle it with ~ gsum0g ) + + + + gsumconstf + ~ gsumfzconstf + requires that the series is indexed by consecutive integers + and has an element (if the latter condition is an issue, detect it + with something like ~ fzn and handle it with ~ gsum0g ) + + + + gsumconstf + none + it should be possible to adapt ~ gsumfzconst to a version with + a not-free-in hypothesis + + + + gsummptshft + none + presumably provable (the sums are already indexed by consecutive + integers) + + + + gsummhm + ~ gsumfzmhm + The group sum needs to be indexed by + consecutive integers. + + + + gsummhm2 + ~ gsumfzmhm2 + The group sum needs to be indexed by + consecutive integers. + + + + gsumsnfd + ~ gsumfzsnfd + The group sum needs to be indexed by an integer + + + + gsumsnd , gsumsnf , gsumsn + none + should be possible with small changes (see ~ gsumfzsnfd ) + + + + gsumpr + none + Should be possible with some changes. Because ` M ` and ` N ` + would need to be consecutive integers, perhaps it would be easier + to just state them as ` M ` and ` M + 1 ` . + + mgpval ~ mgpvalg @@ -11926,6 +12020,19 @@ once we define division rings this should follow + + drngui + ~ cnfldui + for complex numbers + + + + none + for general division rings. To provide theorems like + this we'd need more development of apartness rings and/or + ~ df-apr . + + issubdrg none @@ -12461,6 +12568,12 @@ presumably not provable + + gsumfsum + ~ gsumfzfsum + requires the sums to be indexed by consecutive integers + + zringlpirlem1 , zringlpirlem2 , zringlpirlem3 , zringlpir , zringndrg , zringcyg @@ -12498,9 +12611,8 @@ expghm - none - the set.mm proof uses drngui - there would appear to be issues - around not equal to zero versus invertible + ~ expghmap + changes not equal to apart @@ -15163,7 +15275,7 @@ - lgseisenlem3 , lgseisenlem4 , lgseisen + lgseisen none presumably the set.mm proofs can be adapted once we have added more theorems concerning ` gsum ` . diff --git a/set.mm b/set.mm index 21b4d0f96..1e8ae3f43 100644 --- a/set.mm +++ b/set.mm @@ -402803,9 +402803,8 @@ multiple of the prime (in which case it is ` 0 ` , see ~ lgsne0 ) and NUYOVUEVUFABUWTUXJUYKVWSWTABUWTUXKXAXAUXJUYLVXAVUFVURUXIIXCVUOXDUWOVXTU YKUXFKUXMVXCUXLUXEUYMVXEVYAVWQUWPYMUWQ $. - $( Lemma for ~ lgseisen . The function ` M ` is an injection (and hence - a bijection by the pigeonhole principle). (Contributed by Mario - Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) $) + $( Lemma for ~ lgseisen . (Contributed by Mario Carneiro, 18-Jun-2015.) + (Proof shortened by AV, 15-Jun-2019.) $) lgseisenlem4 $p |- ( ph -> ( ( Q ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) mod P ) ) $=