diff --git a/changes-set.txt b/changes-set.txt index 4c4b20eecb..f6b60d8ed5 100644 --- a/changes-set.txt +++ b/changes-set.txt @@ -93,6 +93,7 @@ make a github issue.) DONE: Date Old New Notes 23-Sep-25 elfzolem1 [same] moved from GS's mathbox to main set.mm +22-Sep-25 oduprs [same] Moved from TA's mathbox to main set.mm 17-Sep-25 psdmul [same] Removed unneeded hypothesis 17-Sep-25 psdvsca [same] Removed unneeded hypothesis 17-Sep-25 psdadd [same] Removed unneeded hypothesis diff --git a/set.mm b/set.mm index 6c67f3f42e..5b00b264e1 100644 --- a/set.mm +++ b/set.mm @@ -225822,6 +225822,25 @@ that F(A') is isomorphic to B'.". Therefore, the category of sets and CLMZDFCLZRSMDDCLTUANABCDEFGHOPQ $. $} + ${ + $d x y z D $. $d x y z K $. + oduprs.d $e |- D = ( ODual ` K ) $. + $( Being a proset is a self-dual property. (Contributed by Thierry Arnoux, + 13-Sep-2018.) $) + oduprs $p |- ( K e. Proset -> D e. Proset ) $= + ( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s + wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci + ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ + UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN + UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC + KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC + UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB + LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV + NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP + ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH + $. + $} + ${ $d K f b r x y z $. $d B f b r x y z $. $d .<_ f b r x y z $. $d X x y z $. $d Y x y z $. @@ -509901,25 +509920,6 @@ Splicing words (substring replacement) RTVLWKVPVRVTXRTVEVLWKVPVOVTXRTVFVEQQQVGVHEFGWFVMVPWFNVPNUOVI $. $} - ${ - $d x y z D $. $d x y z K $. - oduprs.d $e |- D = ( ODual ` K ) $. - $( Being a proset is a self-dual property. (Contributed by Thierry Arnoux, - 13-Sep-2018.) $) - oduprs $p |- ( K e. Proset -> D e. Proset ) $= - ( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s - wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci - ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ - UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN - UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC - KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC - UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB - LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV - NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP - ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH - $. - $} - ${ posrasymb.b $e |- B = ( Base ` K ) $. posrasymb.l $e |- .<_ = ( ( le ` K ) i^i ( B X. B ) ) $. @@ -838460,6 +838460,38 @@ preorders induced by the categories are considered ( ~ catprs2 ). LUUGUUJUWHYLYMYOYPYQFGUUJUWHXCYRXKXMXLYSYT $. $} + ${ + $d C f x y $. $d F f x y $. $d H f x y $. $d J f x y $. $d R f x y $. + $d S f $. $d U f $. $d V f $. $d X f x y $. $d Y f x y $. + $d f ph x y $. + thinccisod.c $e |- C = ( CatCat ` U ) $. + thinccisod.r $e |- R = ( Base ` X ) $. + thinccisod.s $e |- S = ( Base ` Y ) $. + thinccisod.h $e |- H = ( Hom ` X ) $. + thinccisod.j $e |- J = ( Hom ` Y ) $. + thinccisod.u $e |- ( ph -> U e. V ) $. + thinccisod.x $e |- ( ph -> X e. U ) $. + thinccisod.y $e |- ( ph -> Y e. U ) $. + thinccisod.xt $e |- ( ph -> X e. ThinCat ) $. + thinccisod.yt $e |- ( ph -> Y e. ThinCat ) $. + thinccisod.f $e |- ( ph -> F : R -1-1-onto-> S ) $. + thinccisod.1 $e |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> + ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) $. + $( Two thin categories are isomorphic if the induced preorders are + order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. + (Contributed by Zhi Wang, 22-Sep-2025.) $) + thinccisod $p |- ( ph -> X ( ~=c ` C ) Y ) $= + ( vf ccic cfv wbr cv co c0 wceq wb wral wf1o wa wex cvv wf f1of syl fvexd + cbs eqeltrid fexd ralrimivva fveq1 oveq12d eqeq1d bibi2d 2ralbidv anbi12d + jca f1oeq1 spcedv eqid ccat cin thinccd catcbas eleqtrrd thincciso mpbird + elind ) ALMDUGUHUIBUJZCUJZIUKULUMZWFUFUJZUHZWGWIUHZJUKZULUMZUNZCEUOBEUOZE + FWIUPZUQZUFURAWQWHWFHUHZWGHUHZJUKZULUMZUNZCEUOBEUOZEFHUPZUQUFUSHAEFUSHAXD + EFHUTUDEFHVAVBAELVDUHUSOALVDVCVEVFAXCXDAXBBCEEUEVGUDVNWIHUMZWOXCWPXDXEWNX + BBCEEXEWMXAWHXEWLWTULXEWJWRWKWSJWFWIHVHWGWIHVHVIVJVKVLEFWIHVOVMVPABCDVDUH + ZDEFGUFIJKLMNXFVQZOPQRSALGVRVSZXFAGVRLTALUBVTWEAXFDGKNXGSWAZWBAMXHXFAGVRM + UAAMUCVTWEXIWBUBUCWCWD $. + $} + ${ $d C f x y $. $( Any structure with an empty set of objects is a thin category. @@ -838847,8 +838879,64 @@ mean the category of preordered sets (classes). However, "ProsetToCat" GUKZPQOAULRZPSTAUMRZUNUOVJPQUPUQCVJURUSVLAVJSTZVIVLVKCUTVSVKCVBCVJVCVDA VIVSAGHFDQPVPVQVRVEVFVGVH $. $} + + oduoppcbas.d $e |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) $. + oduoppcbas.o $e |- O = ( oppCat ` C ) $. + $( The dual of a preordered set and the opposite category have the same set + of objects. (Contributed by Zhi Wang, 22-Sep-2025.) $) + oduoppcbas $p |- ( ph -> ( Base ` D ) = ( Base ` O ) ) $= + ( cbs cfv codu cproset wcel eqid oduprs syl wceq odubas prstcbas oppcbas + a1i eqcomd eqtrdi ) ACJKZBJKZEJKAUEBDFGADJKZUEAUGCDLKZHADMNUHMNGUHDUHOZPQ + UGUHJKRAUGUHDUIUGOSUBTUCTUFBEIUFOUAUD $. + + ${ + $d C x y $. $d D x y $. $d K x y $. $d O x y $. $d U x y $. + $d V x y $. $d ph x y $. + oduoppcciso.u $e |- ( ph -> U e. V ) $. + oduoppcciso.d $e |- ( ph -> D e. U ) $. + oduoppcciso.o $e |- ( ph -> O e. U ) $. + $( The dual of a preordered set and the opposite category are + category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed + by Zhi Wang, 22-Sep-2025.) $) + oduoppcciso $p |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) $= + ( cfv eqid wcel co c0 wceq vx vy ccatc cbs cid cres chom cproset oduprs + codu prstcthin cthinc oppcthin wf1o f1oi oduoppcbas f1oeq3d mpbii cv wa + syl cple wbr wne wb oduleg adantl cprstc adantr eqidd prstcleval simprl + simprr prstchom oppcbas eqtr4di eleqtrd 3bitr3d fvresi ad2antrl oveq12d + necon4bid ad2antll oppchom eqtrdi eqeq1d bitr4d thinccisod ) AUAUBDUCOZ + CUDOZFUDOZDUEWJUFZCUGOZFUGOZGCFWIPWJPWKPWMPWNPLMNACEUJOZJAEUHQZWOUHQZIW + OEWOPZUIZVAUKABULQFULQABEHIUKBFKUMVAAWJWJWLUNWJWKWLUNWJUOAWJWKWJWLABCEF + HIJKUPZUQURAUAUSZWJQZUBUSZWJQZUTZUTZXAXCWMRZSTXCXABUGOZRZSTXAWLOZXCWLOZ + WNRZSTXFXGSXISXFXAXCWOVBOZVCZXCXAEVBOZVCZXGSVDXISVDXEXNXPVEAXAXCWOXMXOE + WJWJWRXOPXMPVFVGXFCWMWOXMXAXCACWOVHOTXEJVIZXFWPWQAWPXEIVIZWSVAZXFCWOXMX + QXSXFXMVJVKXFWMVJAXBXDVLZAXBXDVMZVNXFBXHEXOXCXAABEVHOTXEHVIZXRXFBEXOYBX + RXFXOVJVKXFXHVJXFXCWJBUDOZYAAWJYCTXEAWJWKYCWTYCBFKYCPVOVPVIZVQXFXAWJYCX + TYDVQVNVRWBXFXLXISXFXLXAXCWNRXIXFXJXAXKXCWNXBXJXATAXDWJXAVSVTXDXKXCTAXB + WJXCVSWCWABXHFXAXCXHPKWDWEWFWGWH $. + $} + +$( + The following cannot be proved without using discouraged theorems such as + ~ prstchomval . + @( The dual of a preordered set and the opposite category have the same set + of objects, morphisms, and compositions. Example 3.6(1) of [Adamek] + p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @) + oduoppc @p |- ( ph -> ( ( Homf ` D ) = ( Homf ` O ) + /\ ( comf ` D ) = ( comf ` O ) ) ) @= + ( ) ? @. +$) $} +$( + The following cannot be proved without using discouraged theorems such as + ~ prstchomval . + @( The correspondence between order dual and opposite category. Example + 3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @) + oduoppccom @p |- ( ProsetToCat o. ( ODual |` Proset ) ) + = ( ODual o. ( oppCat o. ProsetToCat ) ) @= + ( ) ? @. +$) + ${ $d B x y $. $d C x y $. $d ph x y $. postc.c $e |- ( ph -> C = ( ProsetToCat ` K ) ) $. @@ -839037,16 +839125,77 @@ structure becomes the object here (see ~ mndtcbasval ), instead of just ( vy ccat wcel ccid cfv cbs c0g cmpt wceq mndtccatid simpld ) ABGHBIJFBKJ CLJMNAFBCDEOP $. - mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $. - mndtcid.x $e |- ( ph -> X e. B ) $. - mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $. - $( The identity morphism, or identity arrow, of the category built from a - monoid is the identity element of the monoid. (Contributed by Zhi Wang, - 22-Sep-2024.) $) - mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $= - ( vx c0g cfv cbs cvv ccid cmpt ccat wceq mndtccatid simprd eqtrd cv eqidd - wcel wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUFUMUNTALC - EGHUAUBUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $. + ${ + mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $. + mndtcid.x $e |- ( ph -> X e. B ) $. + mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $. + $( The identity morphism, or identity arrow, of the category built from a + monoid is the identity element of the monoid. (Contributed by Zhi + Wang, 22-Sep-2024.) $) + mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $= + ( vx c0g cfv cbs cvv ccid cmpt ccat wceq wcel mndtccatid eqtrd cv eqidd + simprd wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUAUMUN + TALCEGHUBUFUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $. + $} + + ${ + oppgoppchom.d $e |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) $. + oppgoppchom.o $e |- O = ( oppCat ` C ) $. + oppgoppchom.x $e |- ( ph -> X e. ( Base ` D ) ) $. + oppgoppchom.y $e |- ( ph -> Y e. ( Base ` O ) ) $. + ${ + oppgoppchom.h $e |- ( ph -> H = ( Hom ` D ) ) $. + oppgoppchom.j $e |- ( ph -> J = ( Hom ` O ) ) $. + $( The converted opposite monoid has the same hom-set as that of the + opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed + by Zhi Wang, 21-Sep-2025.) $) + oppgoppchom $p |- ( ph -> ( X H X ) = ( Y J Y ) ) $= + ( co cfv cbs chom coppg wceq eqid oppgbas a1i oppcbas eqcomi mndtchom + eqidd cmnd wcel oppgmnd syl 3eqtr4rd oppchom eqtr4di oveqd eqtr4d ) A + HHDRZIIGUASZRZIIERAUTIIBUASZRZVBAFTSZFUBSZTSZVDUTVEVGUCAVEFVFVFUDZVEU + DUEUFAGTSZBVCFIIJKVIBTSZUCAVJVIVJBGMVJUDUGUHUFOOAVCUJUIACTSZCDVFHHLAF + UKULVFUKULKFVFVHUMUNAVKUJNNPUIUOBVCGIIVCUDMUPUQAEVAIIQURUS $. + $} + + ${ + oppgoppcco.o $e |- ( ph -> .x. = ( comp ` D ) ) $. + oppgoppcco.x $e |- ( ph -> .xb = ( comp ` O ) ) $. + $( The converted opposite monoid has the same composition as that of + the opposite category. Example 3.6(2) of [Adamek] p. 25. + (Contributed by Zhi Wang, 22-Sep-2025.) $) + oppgoppcco $p |- ( ph -> ( <. X , X >. .x. X ) = + ( <. Y , Y >. .xb Y ) ) $= + ( co cfv eqid cop cco ctpos cplusg cbs wceq oppcbas a1i eqidd mndtcco + eqcomi tposeqd oppccofval coppg cmnd wcel oppgmnd oppgplusfval eqtrdi + syl 3eqtr4rd oveqd eqtr4d ) AHHUAHERZIIUAZIGUBSZRZVEIDRAVEIBUBSZRZUCF + UDSZUCZVGVDAVIVJAGUESZBVHFIIIJKVLBUESZUFAVMVLVMBGMVMTUGUKZUHOOOAVHUIU + JULAVLBVHGIIIVNVHTMOOOUMAVDFUNSZUDSZVKACUESZCEVOHHHLAFUOUPVOUOUPKFVOV + OTZUQUTAVQUINNNPUJVJVPFVOVJTVRVPTURUSVAADVFVEIQVBVC $. + $} + + $( The converted opposite monoid has the same identity morphism as that + of the opposite category. Example 3.6(2) of [Adamek] p. 25. + (Contributed by Zhi Wang, 22-Sep-2025.) $) + oppgoppcid $p |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) $= + ( c0g cfv ccid wceq eqid cbs wcel coppg oppgid a1i eqcomi ccat mndtccat + oppcbas oppcid syl mndtcid cmnd oppgmnd eqidd 3eqtr4rd ) ADNOZDUAOZNOZG + EPOZOFCPOZOUOUQQADUPUOUPRZUORUBUCAESOZBURDGHIVABSOZQAVBVAVBBEKVBRUGUDUC + MABUETURBPOZQABDHIUFVCBEKVCRUHUIUJACSOZCUSUPFJADUKTUPUKTIDUPUTULUIAVDUM + LAUSUMUJUN $. + $} + +$( + The following is not true yet because base set of converted category + depends on the original monoid in the current definition. + @{ + oppgtoppc.o @e |- O = ( oppG ` M ) @. + oppgtoppc.d @e |- ( ph -> D = ( MndToCat ` O ) ) @. + @( An opposite monoid is converted to an opposite category. Example + 3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @) + oppgtoppc @p |- ( ph -> D = ( oppCat ` C ) ) @= + ( ) ? @. + @} +$) $} ${