11import glob
2- from pathlib import Path
32from concurrent .futures import ProcessPoolExecutor
4- import numpy as np
3+ from pathlib import Path
4+
55import anndata
6+ import numpy as np
7+ import pandas as pd
68import scanpy as sc
7- from scipy .sparse import spmatrix , csr_matrix , issparse , csr_array
9+ from scipy .sparse import csr_array , csr_matrix , spmatrix
810from sklearn .utils .sparsefuncs import inplace_column_scale , mean_variance_axis
9- import pandas as pd
10- import os
1111
1212
1313def prepare_dataset_deviance (
@@ -35,7 +35,7 @@ def prepare_dataset_deviance(
3535
3636 non_y_ij = n_i [:, None ] - y_ij
3737 mu_ij = n_i [:, None ] * pi_j [None , :]
38- signs = np .sign (y_ij - pi_j [None , :])
38+ signs = np .sign (y_ij - mu_ij [None , :])
3939
4040 first_term = 2 * y_ij * np .log (np .maximum (y_ij , 1.0 ) / mu_ij )
4141 second_term = 2 * non_y_ij * np .log (non_y_ij / (n_i [:, None ] - mu_ij ))
@@ -46,8 +46,7 @@ def prepare_dataset_deviance(
4646 X .obs ["condition_unique_idxs" ] = X .obs ["condition_unique_idxs" ].astype ("category" )
4747
4848 # Pre-calculate gene means
49- means , _ = mean_variance_axis (csr_matrix (X .X ), axis = 0 ) # type: ignore
50- X .var ["means" ] = means
49+ X .var ["means" ] = np .zeros (X .shape [1 ])
5150
5251 assert np .all (np .isfinite (X .X )) # type: ignore
5352 return X
0 commit comments