Skip to content

Commit b098dc1

Browse files
author
Andrew Ramirez
committed
Remove unused functions and notes from API reference, keep only tutorial functions
1 parent 3e1f9b6 commit b098dc1

File tree

1 file changed

+0
-54
lines changed

1 file changed

+0
-54
lines changed

docs/api.rst

Lines changed: 0 additions & 54 deletions
Original file line numberDiff line numberDiff line change
@@ -31,36 +31,6 @@ Factorization
3131
:returns: The input AnnData object with added RISE decomposition results in X.uns["Pf2_weights"], X.uns["Pf2_A"], X.uns["Pf2_B"], X.varm["Pf2_C"], X.obsm["projections"], X.obsm["weighted_projections"], and X.obsm["X_pf2_PaCMAP"]
3232
:rtype: anndata.AnnData
3333

34-
.. py:function:: rise_pca_r2x(X: anndata.AnnData, ranks)
35-
:module: RISE.factorization
36-
37-
Compute variance explained (R²X) for RISE and PCA across different ranks.
38-
39-
This function calculates how much variance is explained by RISE decomposition
40-
and PCA at different numbers of components. Used to determine the optimal rank
41-
by comparing model complexity versus explanatory power.
42-
43-
:param X: Preprocessed AnnData object containing single-cell RNA-seq data. Must have X.obs["condition_unique_idxs"] for RISE decomposition.
44-
:type X: anndata.AnnData
45-
:param ranks: Array of rank values to test (e.g., [1, 5, 10, 15, 20, 25, 30]).
46-
:type ranks: array-like of int
47-
:returns: Tuple of (rise_r2x, pca_r2x) where each is an array of variance explained values
48-
:rtype: tuple of numpy.ndarray
49-
50-
.. py:function:: correct_conditions(X: anndata.AnnData)
51-
:module: RISE.factorization
52-
53-
Correct the condition factors by normalizing for overall read depth.
54-
55-
This function adjusts condition factors (stored in X.uns["Pf2_A"]) to account for
56-
differences in sequencing depth across conditions. It uses linear regression to
57-
model the relationship between total read counts and condition factor magnitudes.
58-
59-
:param X: AnnData object containing RISE decomposition results. Must have X.obs["condition_unique_idxs"] and X.uns["Pf2_A"].
60-
:type X: anndata.AnnData
61-
:returns: Corrected condition factors normalized by sequencing depth
62-
:rtype: numpy.ndarray
63-
6434
Preprocessing
6535
~~~~~~~~~~~~~
6636

@@ -234,28 +204,4 @@ Factor Stability
234204
:param runs: Number of independent runs per rank to use for FMS calculation.
235205
:type runs: int
236206

237-
.. note::
238-
FMS > 0.9: Highly stable decomposition
239-
240-
FMS > 0.6: Acceptably stable decomposition
241-
242-
FMS < 0.6: Unstable, consider lower rank or more data
243-
244-
.. py:function:: calculateFMS(A: anndata.AnnData, B: anndata.AnnData)
245-
:module: RISE.figures.figureS4
246-
247-
Calculate Factor Match Score (FMS) between two RISE decompositions.
248-
249-
Factor Match Score measures the similarity between two tensor decompositions by comparing their factor matrices. Values range from 0 (no similarity) to 1 (identical factors).
250-
251-
:param A: First AnnData object with RISE decomposition results.
252-
:type A: anndata.AnnData
253-
:param B: Second AnnData object with RISE decomposition results.
254-
:type B: anndata.AnnData
255-
:returns: Factor Match Score between 0 and 1. Higher values indicate more similar decompositions.
256-
:rtype: float
257-
258-
.. note::
259-
This function uses tlviz.factor_tools.factor_match_score with weights consideration disabled and skipping the condition mode for stability assessment.
260-
261207

0 commit comments

Comments
 (0)