|
| 1 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 2 | +# you may not use this file except in compliance with the License. |
| 3 | +# You may obtain a copy of the License at |
| 4 | +# |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# |
| 7 | +# Unless required by applicable law or agreed to in writing, software |
| 8 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 9 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 10 | +# See the License for the specific language governing permissions and |
| 11 | +# limitations under the License. |
| 12 | + |
| 13 | +from sklearn.decomposition import TruncatedSVD |
| 14 | +from sklearn.utils import check_array |
| 15 | +import numpy as np |
| 16 | + |
| 17 | +from .soft_impute import Solver |
| 18 | + |
| 19 | +F32PREC = np.finfo(np.float32).eps |
| 20 | + |
| 21 | +def masked_mae(X_true, X_pred, mask): |
| 22 | + masked_diff = X_true[mask] - X_pred[mask] |
| 23 | + return np.mean(np.abs(masked_diff)) |
| 24 | + |
| 25 | + |
| 26 | +class IterativeSVD(Solver): |
| 27 | + def __init__( |
| 28 | + self, |
| 29 | + rank, |
| 30 | + convergence_threshold=0.00001, |
| 31 | + max_iters=200, |
| 32 | + svd_algorithm="arpack", |
| 33 | + init_fill_method="zero", |
| 34 | + random_state=None, |
| 35 | + min_value=None, |
| 36 | + max_value=None, |
| 37 | + verbose=False): |
| 38 | + Solver.__init__( |
| 39 | + self, |
| 40 | + fill_method=init_fill_method, |
| 41 | + min_value=min_value, |
| 42 | + max_value=max_value) |
| 43 | + self.rank = rank |
| 44 | + self.max_iters = max_iters |
| 45 | + self.svd_algorithm = svd_algorithm |
| 46 | + self.convergence_threshold = convergence_threshold |
| 47 | + self.verbose = verbose |
| 48 | + self.random_state = random_state |
| 49 | + |
| 50 | + def _converged(self, X_old, X_new, missing_mask): |
| 51 | + # check for convergence |
| 52 | + old_missing_values = X_old[missing_mask] |
| 53 | + new_missing_values = X_new[missing_mask] |
| 54 | + difference = old_missing_values - new_missing_values |
| 55 | + ssd = np.sum(difference ** 2) |
| 56 | + old_norm_squared = (old_missing_values ** 2).sum() |
| 57 | + # edge cases |
| 58 | + if old_norm_squared == 0 or \ |
| 59 | + (old_norm_squared < F32PREC and ssd > F32PREC): |
| 60 | + return False |
| 61 | + else: |
| 62 | + return (ssd / old_norm_squared) < self.convergence_threshold |
| 63 | + |
| 64 | + def solve(self, X, missing_mask): |
| 65 | + X = check_array(X, force_all_finite=False) |
| 66 | + |
| 67 | + observed_mask = ~missing_mask |
| 68 | + X_filled = X |
| 69 | + for i in range(self.max_iters): |
| 70 | + curr_rank = self.rank |
| 71 | + tsvd = TruncatedSVD(curr_rank, algorithm=self.svd_algorithm, random_state=self.random_state) |
| 72 | + X_reduced = tsvd.fit_transform(X_filled) |
| 73 | + X_reconstructed = tsvd.inverse_transform(X_reduced) |
| 74 | + X_reconstructed = self.clip(X_reconstructed) |
| 75 | + mae = masked_mae( |
| 76 | + X_true=X, |
| 77 | + X_pred=X_reconstructed, |
| 78 | + mask=observed_mask) |
| 79 | + if self.verbose: |
| 80 | + print( |
| 81 | + "[IterativeSVD] Iter %d: observed MAE=%0.6f" % ( |
| 82 | + i + 1, mae)) |
| 83 | + converged = self._converged( |
| 84 | + X_old=X_filled, |
| 85 | + X_new=X_reconstructed, |
| 86 | + missing_mask=missing_mask) |
| 87 | + X_filled[missing_mask] = X_reconstructed[missing_mask] |
| 88 | + if converged: |
| 89 | + break |
| 90 | + return X_filled |
0 commit comments