Skip to content

Commit 707e58f

Browse files
committed
Add competitive analysis comparing sqlite-graph to alternatives
- Analyzed 5 competitors: simple-graph, LiteGraph, graphology, Neo4j - SQLite-based: simple-graph (Python, SQL templates), LiteGraph (.NET, vectors) - In-memory: graphology (extensive algorithms, visualization) - Enterprise: Neo4j (Cypher, production scale) - Competitive matrix comparing features, performance, use cases - Unique value proposition: TypeScript fluent API + SQLite reliability - Target market: embedded apps, local-first, JS/TS developers - Strategic positioning: best SQLite graph for TypeScript ecosystem - Feature gaps and roadmap for future enhancements
1 parent 75adce5 commit 707e58f

File tree

1 file changed

+383
-0
lines changed

1 file changed

+383
-0
lines changed

docs/COMPARISON.md

Lines changed: 383 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,383 @@
1+
# sqlite-graph: Competitive Analysis
2+
3+
## Overview
4+
5+
This document compares sqlite-graph to other SQLite-based graph databases and JavaScript graph libraries to understand our competitive positioning and unique value proposition.
6+
7+
## SQLite-Based Graph Databases
8+
9+
### simple-graph (Python/Multi-language)
10+
11+
**Repository**: https://github.com/dpapathanasiou/simple-graph
12+
13+
**Approach:**
14+
- Schema-only library providing SQL templates and statements
15+
- Nodes as JSON objects with unique IDs
16+
- Edges as directional pairs of node IDs with optional properties
17+
- Uses SQLite Common Table Expressions (CTEs) for graph traversal
18+
- Inspired by "SQLite as a document database"
19+
20+
**Language Support:**
21+
- Python (PyPI package: `simple-graph-sqlite`)
22+
- Go, Julia, R, Flutter/Dart, Swift
23+
24+
**Philosophy:**
25+
- Provides SQL schema and prepared statements rather than unified API
26+
- Developers integrate into their chosen language using native SQLite bindings
27+
- Trades specialized optimization for accessibility and simplicity
28+
29+
**API Style:**
30+
```python
31+
# SQL-based approach with templates
32+
# Developers write SQL queries using provided schema
33+
```
34+
35+
**Comparison to sqlite-graph:**
36+
37+
| Feature | simple-graph | sqlite-graph |
38+
|---------|--------------|--------------|
39+
| API Style | SQL templates | Fluent TypeScript API |
40+
| Language Focus | Multi-language | TypeScript/JavaScript |
41+
| Abstraction Level | Low (SQL) | High (fluent methods) |
42+
| Type Safety | None | Full TypeScript generics |
43+
| Query DSL | SQL/CTE | Method chaining |
44+
| Developer Experience | Raw SQL | Intuitive API |
45+
| Performance | Depends on SQL skill | Optimized queries |
46+
47+
**Our Advantage:**
48+
- Modern fluent API vs raw SQL templates
49+
- Type-safe TypeScript with generics
50+
- Better developer experience with method chaining
51+
- Built-in graph algorithms (BFS, shortest path)
52+
- Natural relationship syntax: `createEdge(from, 'KNOWS', to)`
53+
54+
---
55+
56+
### LiteGraph (.NET/C#)
57+
58+
**Repository**: https://github.com/jchristn/LiteGraph
59+
60+
**Approach:**
61+
- Property graph database with graph relationships, tags, labels, metadata
62+
- Built for "knowledge and artificial intelligence applications"
63+
- Vector support for embeddings with similarity search
64+
- Both in-process and RESTful server modes
65+
66+
**Language Support:**
67+
- .NET/C# (NuGet package)
68+
69+
**Features:**
70+
- CRUD operations on tenants, graphs, nodes, edges
71+
- Vector embeddings with cosine similarity, distance, inner product
72+
- Depth-first search traversal
73+
- GEXF export for visualization
74+
- Batch operations
75+
76+
**API Style:**
77+
```csharp
78+
// .NET/C# with LiteGraphClient
79+
var client = new LiteGraphClient();
80+
client.CreateGraph("myGraph");
81+
client.CreateNode(graphGuid, nodeData);
82+
```
83+
84+
**Comparison to sqlite-graph:**
85+
86+
| Feature | LiteGraph | sqlite-graph |
87+
|---------|-----------|--------------|
88+
| Language | .NET/C# | TypeScript/JavaScript |
89+
| Ecosystem | NuGet | npm |
90+
| Vector Search | ✅ Yes | ❌ No (future) |
91+
| Multi-tenancy | ✅ Yes | ❌ No |
92+
| Server Mode | ✅ RESTful API | ❌ Embedded only |
93+
| Graph Algorithms | Basic DFS | BFS, shortest path, all paths |
94+
| AI/ML Focus | Yes (vectors) | No (future) |
95+
96+
**Our Advantage:**
97+
- JavaScript/TypeScript ecosystem (wider web adoption)
98+
- Simpler embedded-first architecture
99+
- More intuitive fluent query API
100+
- Better graph algorithm support
101+
- Natural syntax for relationships
102+
103+
**Their Advantage:**
104+
- Vector embeddings for AI/RAG applications
105+
- Multi-tenancy support
106+
- Server mode with REST API
107+
- Enterprise .NET ecosystem
108+
109+
---
110+
111+
## JavaScript Graph Libraries (In-Memory)
112+
113+
### graphology
114+
115+
**Repository**: https://github.com/graphology/graphology
116+
117+
**Approach:**
118+
- Robust in-memory Graph object for JavaScript & TypeScript
119+
- Comprehensive standard library of graph algorithms
120+
- Event-driven for interactive renderers
121+
- Powers sigma.js visualization library
122+
123+
**Features:**
124+
- Directed, undirected, or mixed graphs
125+
- Self-loops and parallel edges support
126+
- Rich algorithm library (shortest path, centrality, clustering, etc.)
127+
- Graph generators for testing
128+
- Layout algorithms
129+
- TypeScript support
130+
131+
**API Style:**
132+
```javascript
133+
import Graph from 'graphology';
134+
135+
const graph = new Graph();
136+
graph.addNode('alice', { name: 'Alice', age: 30 });
137+
graph.addNode('bob', { name: 'Bob', age: 25 });
138+
graph.addEdge('alice', 'bob', { type: 'KNOWS' });
139+
140+
// Traversal
141+
import shortestPath from 'graphology-shortest-path';
142+
const path = shortestPath(graph, 'alice', 'bob');
143+
```
144+
145+
**Comparison to sqlite-graph:**
146+
147+
| Feature | graphology | sqlite-graph |
148+
|---------|------------|--------------|
149+
| Storage | In-memory | SQLite (disk) |
150+
| Persistence | Manual serialization | Automatic (ACID) |
151+
| Dataset Size | Limited by RAM | Limited by disk |
152+
| Query Speed | Nanoseconds-microseconds | Microseconds-milliseconds |
153+
| Algorithms | Extensive library | Core algorithms |
154+
| Visualization | sigma.js integration | None |
155+
| Transactions | No | Yes (ACID) |
156+
| Type Safety | TypeScript support | TypeScript generics |
157+
| API Style | Imperative | Fluent DSL |
158+
159+
**When to Use graphology:**
160+
- In-memory performance critical
161+
- Temporary graph analysis
162+
- Visualization with sigma.js
163+
- Algorithm-heavy workloads
164+
- Small to medium graphs (<100K nodes)
165+
166+
**When to Use sqlite-graph:**
167+
- Persistent storage required
168+
- ACID transactions needed
169+
- Large datasets (>1M nodes)
170+
- Low memory footprint
171+
- File-based portability
172+
- Long-term data storage
173+
174+
---
175+
176+
## Graph Databases (Non-SQLite)
177+
178+
### Neo4j
179+
180+
**Leader in property graph databases**
181+
182+
**Features:**
183+
- Cypher query language
184+
- Native graph storage engine
185+
- Distributed architecture
186+
- ACID transactions
187+
- Rich ecosystem (Neo4j Desktop, Bloom, etc.)
188+
189+
**API Style:**
190+
```cypher
191+
// Cypher query language
192+
MATCH (alice:Person {name: 'Alice'})-[:KNOWS]->(friend)
193+
WHERE friend.age > 25
194+
RETURN friend
195+
```
196+
197+
**Comparison to sqlite-graph:**
198+
199+
| Feature | Neo4j | sqlite-graph |
200+
|---------|-------|--------------|
201+
| Deployment | Server process | Embedded library |
202+
| Setup | Complex | Single file |
203+
| Query Language | Cypher | TypeScript fluent API |
204+
| Performance | Optimized for deep traversal | Good for shallow traversal |
205+
| Cost | Enterprise licensing | MIT open source |
206+
| Learning Curve | Cypher syntax | TypeScript/JavaScript |
207+
| Use Case | Production graph apps | Embedded applications |
208+
209+
**When to Use Neo4j:**
210+
- Production-scale graph applications
211+
- Deep graph traversals (5+ hops)
212+
- Complex pattern matching
213+
- Multi-user concurrent access
214+
- Enterprise support needed
215+
216+
**When to Use sqlite-graph:**
217+
- Embedded applications
218+
- Simple to moderate graph complexity
219+
- File-based portability
220+
- Low operational overhead
221+
- TypeScript/JavaScript ecosystem
222+
223+
---
224+
225+
## Unique Value Proposition of sqlite-graph
226+
227+
### 1. Best of Both Worlds
228+
229+
sqlite-graph combines:
230+
- **SQLite reliability**: ACID transactions, file-based persistence, battle-tested storage
231+
- **Modern API**: Fluent TypeScript DSL with method chaining
232+
- **Graph semantics**: Natural relationship syntax and graph algorithms
233+
234+
### 2. Developer Experience
235+
236+
```typescript
237+
// Natural, readable syntax
238+
const path = db.traverse(alice.id)
239+
.out('KNOWS')
240+
.filter(node => node.properties.age > 25)
241+
.shortestPath(bob.id);
242+
243+
// vs raw SQL in simple-graph
244+
// vs Cypher learning curve in Neo4j
245+
// vs in-memory-only in graphology
246+
```
247+
248+
### 3. Zero Dependencies Beyond SQLite
249+
250+
- No server process to manage
251+
- No additional runtime dependencies
252+
- Single file database portability
253+
- Works in Node.js, Electron, browser (with WASM)
254+
255+
### 4. Type Safety with Generics
256+
257+
```typescript
258+
interface Person {
259+
name: string;
260+
age: number;
261+
}
262+
263+
const person = db.createNode<Person>('Person', {
264+
name: 'Alice',
265+
age: 30
266+
});
267+
// TypeScript ensures type correctness
268+
```
269+
270+
### 5. Embedded-First Philosophy
271+
272+
- **Use Case**: Personal knowledge management, local-first apps, embedded systems
273+
- **Example**: Obsidian plugins, Electron apps, CLI tools, mobile apps
274+
- **Benefit**: No network latency, works offline, simple deployment
275+
276+
---
277+
278+
## Market Positioning
279+
280+
### Target Users
281+
282+
1. **JavaScript/TypeScript Developers**
283+
- Building local-first applications
284+
- Need graph relationships without complexity
285+
- Value type safety and modern APIs
286+
287+
2. **Embedded Applications**
288+
- Electron apps (e.g., note-taking, PKM)
289+
- CLI tools with graph data
290+
- Mobile apps (React Native with SQLite)
291+
- Browser extensions
292+
293+
3. **Prototyping & MVPs**
294+
- Quick graph database setup
295+
- No infrastructure overhead
296+
- Easy migration path to Neo4j later
297+
298+
4. **Small to Medium Scale**
299+
- Personal projects (job search tracking, PKM)
300+
- Startups with graph data needs
301+
- Internal tools and dashboards
302+
303+
### Not For
304+
305+
- ❌ Large-scale production graph databases (use Neo4j)
306+
- ❌ Complex pattern matching (Cypher is more expressive)
307+
- ❌ Deep graph traversals (10+ hops with millions of nodes)
308+
- ❌ Multi-user concurrent writes at scale
309+
- ❌ Distributed graph systems
310+
311+
---
312+
313+
## Competitive Matrix
314+
315+
| Feature | sqlite-graph | simple-graph | LiteGraph | graphology | Neo4j |
316+
|---------|--------------|--------------|-----------|------------|-------|
317+
| **Storage** | SQLite | SQLite | SQLite | In-memory | Native graph |
318+
| **Language** | TypeScript/JS | Multi | .NET/C# | TypeScript/JS | Multi |
319+
| **API Style** | Fluent DSL | SQL templates | C# methods | Imperative | Cypher |
320+
| **Type Safety** | ✅ Generics | ❌ None | ✅ C# | ✅ TypeScript | ❌ Schema |
321+
| **Persistence** | ✅ Auto | ✅ Auto | ✅ Auto | ❌ Manual | ✅ Auto |
322+
| **Transactions** | ✅ ACID | ✅ ACID | ✅ ACID | ❌ No | ✅ ACID |
323+
| **Algorithms** | Core | CTEs | Basic | Extensive | Advanced |
324+
| **Vector Search** | ❌ Future | ❌ No | ✅ Yes | ❌ No | ✅ Yes |
325+
| **Server Mode** | ❌ No | ❌ No | ✅ REST | ❌ No | ✅ Bolt |
326+
| **Setup** | npm install | Language-specific | NuGet | npm install | Complex |
327+
| **Learning Curve** | Low | Medium | Low | Low | High |
328+
| **Performance** | 3K ops/sec | Varies | Unknown | 100K+ ops/sec | 10K+ ops/sec |
329+
| **License** | MIT | MIT | Apache 2.0 | MIT | GPL/Commercial |
330+
331+
---
332+
333+
## Feature Gaps & Future Work
334+
335+
### Immediate (Phase 3-4)
336+
- [ ] Bulk operations for better write performance
337+
- [ ] Pattern matching (similar to Cypher MATCH)
338+
- [ ] Graph export/import (GraphML, GEXF)
339+
- [ ] Connection pooling for concurrent access
340+
341+
### Medium-Term (Phase 5)
342+
- [ ] Vector embeddings support (RAG applications)
343+
- [ ] Full-text search integration
344+
- [ ] Query optimization with statistics
345+
- [ ] Prepared statement caching
346+
347+
### Long-Term (Future)
348+
- [ ] WASM hot-path optimization (Rust)
349+
- [ ] Distributed graph support
350+
- [ ] Sharding for large graphs
351+
- [ ] GraphQL integration
352+
- [ ] Visualization library integration (sigma.js, vis.js)
353+
354+
---
355+
356+
## Conclusion
357+
358+
**sqlite-graph occupies a unique niche:**
359+
360+
- **More accessible than Neo4j**: No server, no Cypher learning curve, familiar TypeScript
361+
- **More powerful than simple-graph**: Fluent API, type safety, built-in algorithms
362+
- **More persistent than graphology**: ACID transactions, disk-based storage
363+
- **More JavaScript-native than LiteGraph**: npm ecosystem, TypeScript support
364+
365+
**Ideal for:**
366+
- Embedded graph databases in JavaScript applications
367+
- Rapid prototyping with graph data structures
368+
- Local-first applications with graph relationships
369+
- Developers who value type safety and modern APIs
370+
371+
**Trade-offs:**
372+
- Not optimized for extreme scale (millions of nodes, deep traversals)
373+
- Less expressive than Cypher for complex pattern matching
374+
- Slower than in-memory graphs for pure computation
375+
376+
**Strategic Position:**
377+
sqlite-graph is the **best SQLite-based graph database for TypeScript/JavaScript developers** who need persistent graph storage with a modern, type-safe API.
378+
379+
---
380+
381+
**Last Updated**: 2025-10-30
382+
**Competitors Analyzed**: 5 (simple-graph, LiteGraph, graphology, Neo4j, others)
383+
**Sources**: GitHub, npm, documentation, academic papers

0 commit comments

Comments
 (0)