|
7 | 7 | * SPDX-License-Identifier: MIT |
8 | 8 | */ |
9 | 9 |
|
10 | | -import { writable } from 'svelte/store'; |
| 10 | +import { get, writable } from 'svelte/store'; |
11 | 11 | import BaseVector from '../../script/domain/BaseVector'; |
12 | 12 | import { ClassifierInput } from '../../script/domain/ClassifierInput'; |
13 | 13 | import Filters from '../../script/domain/Filters'; |
14 | 14 | import { stores } from '../../script/stores/Stores'; |
15 | 15 | import TestMLModelTrainer from '../mocks/mlmodel/TestMLModelTrainer'; |
16 | 16 | import type { Filter } from '../../script/domain/Filter'; |
17 | 17 | import FilterTypes, { FilterType } from '../../script/domain/FilterTypes'; |
| 18 | +import ClassifierFactory from '../../script/domain/ClassifierFactory'; |
| 19 | +import LayersModelTrainer from '../../script/mlmodels/LayersModelTrainer'; |
| 20 | +import StaticConfiguration from '../../StaticConfiguration'; |
| 21 | +import TestTrainingDataRepository from '../mocks/TestTrainingDataRepository'; |
| 22 | +import TestGestureRepository from '../mocks/TestGestureRepository'; |
| 23 | +import Confidences from '../../script/domain/stores/Confidences'; |
| 24 | +import Snackbar from '../../components/snackbar/Snackbar'; |
| 25 | +import { repeat } from '../testUtils'; |
18 | 26 |
|
19 | 27 | describe('Classifier tests', () => { |
20 | 28 | test('Changing matrix does not mark model as untrained', async () => { |
@@ -104,4 +112,186 @@ describe('Classifier tests', () => { |
104 | 112 | 20, 2, |
105 | 113 | ]); |
106 | 114 | }); |
| 115 | + |
| 116 | + test('Classifying Should Not Throw', async () => { |
| 117 | + const vectors = [ |
| 118 | + new BaseVector([1, 2, 4], ['x', 'y', 'z']), |
| 119 | + new BaseVector([4, 8, 16], ['x', 'y', 'z']), |
| 120 | + new BaseVector([10, 20, 40], ['x', 'y', 'z']), |
| 121 | + ]; |
| 122 | + const classifierInput = new ClassifierInput(vectors); |
| 123 | + const filterMax: Filter = FilterTypes.createFilter(FilterType.MAX); |
| 124 | + const filterMean: Filter = FilterTypes.createFilter(FilterType.MEAN); |
| 125 | + const filterMin: Filter = FilterTypes.createFilter(FilterType.MIN); |
| 126 | + const filters: Filters = new Filters(writable([filterMax, filterMean, filterMin])); |
| 127 | + |
| 128 | + let iterations = 0; |
| 129 | + |
| 130 | + const trainingData = new TestTrainingDataRepository().getTrainingData(); |
| 131 | + const trainedModel = await new LayersModelTrainer( |
| 132 | + StaticConfiguration.defaultNeuralNetworkSettings, |
| 133 | + () => (iterations += 1), |
| 134 | + ).trainModel(trainingData); |
| 135 | + const model = writable(trainedModel); |
| 136 | + |
| 137 | + const gestureRepository = new TestGestureRepository(); |
| 138 | + gestureRepository.addGesture({ |
| 139 | + color: 'blue', |
| 140 | + ID: 1, |
| 141 | + name: 'test', |
| 142 | + output: {}, |
| 143 | + recordings: [], |
| 144 | + }); |
| 145 | + gestureRepository.addGesture({ |
| 146 | + color: 'blue', |
| 147 | + ID: 2, |
| 148 | + name: 'test', |
| 149 | + output: {}, |
| 150 | + recordings: [], |
| 151 | + }); |
| 152 | + gestureRepository.addGesture({ |
| 153 | + color: 'blue', |
| 154 | + ID: 3, |
| 155 | + name: 'test', |
| 156 | + output: {}, |
| 157 | + recordings: [], |
| 158 | + }); |
| 159 | + |
| 160 | + const confidences = new Confidences(); |
| 161 | + const classifier = new ClassifierFactory().buildClassifier( |
| 162 | + model, |
| 163 | + async () => void 0, |
| 164 | + filters, |
| 165 | + gestureRepository, |
| 166 | + (gestureId, confidence) => confidences.setConfidence(gestureId, confidence), |
| 167 | + new Snackbar(), |
| 168 | + ); |
| 169 | + |
| 170 | + expect(async () => await classifier.classify(classifierInput)).not.throws(); |
| 171 | + }); |
| 172 | + |
| 173 | + test('Classifier should set confidence', async () => { |
| 174 | + const vectors = [ |
| 175 | + new BaseVector([1, 2, 4], ['x', 'y', 'z']), |
| 176 | + new BaseVector([4, 8, 16], ['x', 'y', 'z']), |
| 177 | + new BaseVector([10, 20, 40], ['x', 'y', 'z']), |
| 178 | + ]; |
| 179 | + const classifierInput = new ClassifierInput(vectors); |
| 180 | + const filterMax: Filter = FilterTypes.createFilter(FilterType.MAX); |
| 181 | + const filterMean: Filter = FilterTypes.createFilter(FilterType.MEAN); |
| 182 | + const filterMin: Filter = FilterTypes.createFilter(FilterType.MIN); |
| 183 | + const filters: Filters = new Filters(writable([filterMax, filterMean, filterMin])); |
| 184 | + |
| 185 | + let iterations = 0; |
| 186 | + |
| 187 | + const trainingData = new TestTrainingDataRepository().getTrainingData(); |
| 188 | + const trainedModel = await new LayersModelTrainer( |
| 189 | + StaticConfiguration.defaultNeuralNetworkSettings, |
| 190 | + () => (iterations += 1), |
| 191 | + ).trainModel(trainingData); |
| 192 | + const model = writable(trainedModel); |
| 193 | + |
| 194 | + const gestureRepository = new TestGestureRepository(); |
| 195 | + gestureRepository.addGesture({ |
| 196 | + color: 'blue', |
| 197 | + ID: 1, |
| 198 | + name: 'test', |
| 199 | + output: {}, |
| 200 | + recordings: [], |
| 201 | + }); |
| 202 | + gestureRepository.addGesture({ |
| 203 | + color: 'blue', |
| 204 | + ID: 2, |
| 205 | + name: 'test', |
| 206 | + output: {}, |
| 207 | + recordings: [], |
| 208 | + }); |
| 209 | + gestureRepository.addGesture({ |
| 210 | + color: 'blue', |
| 211 | + ID: 3, |
| 212 | + name: 'test', |
| 213 | + output: {}, |
| 214 | + recordings: [], |
| 215 | + }); |
| 216 | + |
| 217 | + const confidences = new Confidences(); |
| 218 | + |
| 219 | + const classifier = new ClassifierFactory().buildClassifier( |
| 220 | + model, |
| 221 | + async () => void 0, |
| 222 | + filters, |
| 223 | + gestureRepository, |
| 224 | + (gestureId, confidence) => confidences.setConfidence(gestureId, confidence), |
| 225 | + new Snackbar(), |
| 226 | + ); |
| 227 | + |
| 228 | + await classifier.classify(classifierInput); |
| 229 | + |
| 230 | + expect(get(confidences).size).toBe(3); |
| 231 | + }); |
| 232 | + |
| 233 | + test('Classifier should correctly classify', async () => { |
| 234 | + const vectors = [ |
| 235 | + new BaseVector([1, 2, 4], ['x', 'y', 'z']), |
| 236 | + new BaseVector([4, 8, 16], ['x', 'y', 'z']), |
| 237 | + new BaseVector([10, 20, 40], ['x', 'y', 'z']), |
| 238 | + ]; |
| 239 | + const classifierInput = new ClassifierInput(vectors); |
| 240 | + const filterMax: Filter = FilterTypes.createFilter(FilterType.MAX); |
| 241 | + const filterMean: Filter = FilterTypes.createFilter(FilterType.MEAN); |
| 242 | + const filterMin: Filter = FilterTypes.createFilter(FilterType.MIN); |
| 243 | + const filters: Filters = new Filters(writable([filterMax, filterMean, filterMin])); |
| 244 | + |
| 245 | + let iterations = 0; |
| 246 | + |
| 247 | + const trainingData = new TestTrainingDataRepository().getTrainingData(); |
| 248 | + const trainedModel = await new LayersModelTrainer( |
| 249 | + StaticConfiguration.defaultNeuralNetworkSettings, |
| 250 | + () => (iterations += 1), |
| 251 | + ).trainModel(trainingData); |
| 252 | + const model = writable(trainedModel); |
| 253 | + |
| 254 | + const gestureRepository = new TestGestureRepository(); |
| 255 | + gestureRepository.addGesture({ |
| 256 | + color: 'blue', |
| 257 | + ID: 1, |
| 258 | + name: 'test', |
| 259 | + output: {}, |
| 260 | + recordings: [], |
| 261 | + }); |
| 262 | + gestureRepository.addGesture({ |
| 263 | + color: 'blue', |
| 264 | + ID: 2, |
| 265 | + name: 'test', |
| 266 | + output: {}, |
| 267 | + recordings: [], |
| 268 | + }); |
| 269 | + gestureRepository.addGesture({ |
| 270 | + color: 'blue', |
| 271 | + ID: 3, |
| 272 | + name: 'test', |
| 273 | + output: {}, |
| 274 | + recordings: [], |
| 275 | + }); |
| 276 | + |
| 277 | + const confidences = new Confidences(); |
| 278 | + |
| 279 | + const classifier = new ClassifierFactory().buildClassifier( |
| 280 | + model, |
| 281 | + async () => void 0, |
| 282 | + filters, |
| 283 | + gestureRepository, |
| 284 | + (gestureId, confidence) => confidences.setConfidence(gestureId, confidence), |
| 285 | + new Snackbar(), |
| 286 | + ); |
| 287 | + |
| 288 | + // This is based on known correct results |
| 289 | + await classifier.classify(classifierInput) |
| 290 | + |
| 291 | + expect(get(confidences).get(1)).toBeCloseTo(0); |
| 292 | + expect(get(confidences).get(2)).toBeCloseTo(0); |
| 293 | + expect(get(confidences).get(3)).toBeCloseTo(1); |
| 294 | + }, { |
| 295 | + repeats: 20, retry: 2 |
| 296 | + }); |
107 | 297 | }); |
0 commit comments