|
31 | 31 | DataLakeServiceClient, |
32 | 32 | FileSystemClient, |
33 | 33 | ) |
34 | | -from azure.ai.projects import AIProjectClient |
| 34 | +from openai import AzureOpenAI |
35 | 35 |
|
36 | 36 | # Get Azure Key Vault Client |
37 | 37 | key_vault_name = "kv_to-be-replaced" #'nc6262-kv-2fpeafsylfd2e' |
|
61 | 61 | openai_api_version = secret_client.get_secret("AZURE-OPENAI-PREVIEW-API-VERSION").value |
62 | 62 | openai_embedding_model = secret_client.get_secret("AZURE-OPENAI-EMBEDDING-MODEL").value |
63 | 63 | account_name = secret_client.get_secret("ADLS-ACCOUNT-NAME").value |
64 | | -ai_project_endpoint = secret_client.get_secret("AZURE-AI-AGENT-ENDPOINT").value |
65 | 64 |
|
66 | 65 | # Create a search index |
67 | 66 | index_client = SearchIndexClient(endpoint=search_endpoint, credential=credential) |
|
133 | 132 |
|
134 | 133 |
|
135 | 134 | # Function: Get Embeddings |
136 | | -def get_embeddings(text: str, ai_project_endpoint, openai_api_version, credential): |
| 135 | +def get_embeddings(text: str, openai_api_base, openai_api_version, azure_token_provider): |
137 | 136 | model_id = openai_embedding_model or "text-embedding-ada-002" |
138 | | - |
139 | | - # Create AI Projects client |
140 | | - project_client = AIProjectClient( |
141 | | - endpoint=ai_project_endpoint, |
142 | | - credential=credential, |
| 137 | + client = AzureOpenAI( |
143 | 138 | api_version=openai_api_version, |
144 | | - ) |
145 | | - |
146 | | - # Get the OpenAI client from the AI Projects client |
147 | | - openai_client = project_client.get_openai_client( |
148 | | - api_version=openai_api_version |
| 139 | + azure_endpoint=openai_api_base, |
| 140 | + azure_ad_token_provider=azure_token_provider, |
149 | 141 | ) |
150 | 142 |
|
151 | | - embedding = openai_client.embeddings.create(input=text, model=model_id).data[0].embedding |
| 143 | + embedding = client.embeddings.create(input=text, model=model_id).data[0].embedding |
152 | 144 |
|
153 | 145 | return embedding |
154 | 146 |
|
@@ -268,12 +260,12 @@ def chunk_data(text): |
268 | 260 |
|
269 | 261 | try: |
270 | 262 | v_contentVector = get_embeddings( |
271 | | - d["content"], ai_project_endpoint, openai_api_version, credential |
| 263 | + d["content"], openai_api_base, openai_api_version, token_provider |
272 | 264 | ) |
273 | 265 | except: |
274 | 266 | time.sleep(30) |
275 | 267 | v_contentVector = get_embeddings( |
276 | | - d["content"], ai_project_endpoint, openai_api_version, credential |
| 268 | + d["content"], openai_api_base, openai_api_version, token_provider |
277 | 269 | ) |
278 | 270 |
|
279 | 271 | docs.append( |
|
0 commit comments