|
1 | | -{"cells":[{"cell_type":"code","execution_count":null,"id":"3b73b213-58af-4209-9efd-ac34c9e1e1d7","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"microsoft":{"language":"python","language_group":"synapse_pyspark"},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["# IMPORTANT: This notebook manipulates sample data to guarantee that the Power BI report includes data for the current date, the last two days, and the last seven days. \n","# It is OPTIONAL and is only used to ensure the Power BI report can display data during each deployment."]},{"cell_type":"code","execution_count":null,"id":"e8e036de-0d34-4ea5-ab75-b624ddc2e220","metadata":{"collapsed":false,"jupyter":{"outputs_hidden":false,"source_hidden":false},"microsoft":{"language":"python","language_group":"synapse_pyspark"},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%%sql\n","--# RUN TO MOVE THE DATES FORWARD TO TODAY\n","UPDATE ckm_conv_processed\n","SET StartTime = DATEADD(day, (SELECT DATEDIFF(NOW(), MAX(ConversationDate)) FROM ckm_conv_processed), StartTime),\n","EndTime = DATEADD(day, (SELECT DATEDIFF(NOW(), MAX(ConversationDate)) FROM ckm_conv_processed), EndTime),\n","ConversationDate = DATEADD(day, (SELECT DATEDIFF(NOW(), MAX(ConversationDate)) FROM ckm_conv_processed), ConversationDate)"]},{"cell_type":"code","execution_count":null,"id":"82c35c12-b919-4e55-959a-2300f0412ee0","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"microsoft":{"language":"python","language_group":"synapse_pyspark"},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["# This code manipulates sample data that allocates a percentage of the data\n","# across a two weeks period to support storytelling and demo\n","\n","import pandas as pd\n","from datetime import date, datetime, timedelta\n","from pyspark.sql.functions import col\n","\n","df = spark.sql(\"SELECT * FROM ckm_conv_processed\")\n","\n","# Convert string columns to timestamp types\n","df = df.withColumn(\"StartTime\", col(\"StartTime\").cast(\"timestamp\"))\n","df = df.withColumn(\"EndTime\", col(\"EndTime\").cast(\"timestamp\"))\n","df = df.withColumn(\"ConversationDate\", col(\"ConversationDate\").cast(\"timestamp\"))\n","\n","dfp = df.toPandas()\n","dfp = dfp.sample(frac=1) # This line randomly shuffles the df for a new distribution and demo percentages\n","\n","# Following list are date weights from Today-0 to Today-13 (two weeks)\n","weights = [30, 26, 5, 5, 5, 5, 15, 2, 2, 1, 1, 1, 1, 1]\n","dfindex = 0 # index loop through all conversations\n","daysback = 0 # start at today and work backwards\n","for row in weights:\n"," numconvos = int((row/100.00) * df.count())\n"," for i in range(numconvos):\n"," dfp.at[dfindex, 'StartTime'] = datetime.combine(date.today() - timedelta(days = daysback) , dfp.at[dfindex, 'StartTime'].time())\n"," dfp.at[dfindex, 'EndTime'] = datetime.combine(date.today() - timedelta(days = daysback) , dfp.at[dfindex, 'EndTime'].time())\n"," dfp.at[dfindex, 'ConversationDate'] = datetime.combine(date.today() - timedelta(days = daysback) , dfp.at[dfindex, 'ConversationDate'].time())\n"," dfindex += 1\n"," daysback += 1\n","df = spark.createDataFrame(dfp)\n","\n","# Write to temp table, then update final results table\n","df.write.format('delta').mode('overwrite').option(\"overwriteSchema\", \"true\").saveAsTable('ckm_conv_processed_temp')\n","df = spark.sql(\"SELECT * FROM ckm_conv_processed_temp \")\n","df.write.format('delta').mode('overwrite').option(\"overwriteSchema\", \"false\").saveAsTable('ckm_conv_processed')"]}],"metadata":{"dependencies":{"lakehouse":{"default_lakehouse":"e6ad9dad-e3da-4da5-bca6-6572c466b69a","default_lakehouse_name":"ckm_lakehouse","default_lakehouse_workspace_id":"0d98d480-171b-4b4d-a8e7-80fbd031d1a6","known_lakehouses":[{"id":"e6ad9dad-e3da-4da5-bca6-6572c466b69a"}]}},"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python","language_group":"synapse_pyspark","ms_spell_check":{"ms_spell_check_language":"en"}},"nteract":{"version":" [email protected]"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5} |
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "3b73b213-58af-4209-9efd-ac34c9e1e1d7", |
| 7 | + "metadata": { |
| 8 | + "jupyter": { |
| 9 | + "outputs_hidden": false, |
| 10 | + "source_hidden": false |
| 11 | + }, |
| 12 | + "microsoft": { |
| 13 | + "language": "python", |
| 14 | + "language_group": "synapse_pyspark" |
| 15 | + }, |
| 16 | + "nteract": { |
| 17 | + "transient": { |
| 18 | + "deleting": false |
| 19 | + } |
| 20 | + } |
| 21 | + }, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "# IMPORTANT: This notebook manipulates sample data to guarantee that the Power BI report includes data for the current date, the last two days, and the last seven days. \n", |
| 25 | + "# It is OPTIONAL and is only used to ensure the Power BI report can display data during each deployment." |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": null, |
| 31 | + "id": "e8e036de-0d34-4ea5-ab75-b624ddc2e220", |
| 32 | + "metadata": { |
| 33 | + "collapsed": false, |
| 34 | + "jupyter": { |
| 35 | + "outputs_hidden": false, |
| 36 | + "source_hidden": false |
| 37 | + }, |
| 38 | + "microsoft": { |
| 39 | + "language": "python", |
| 40 | + "language_group": "synapse_pyspark" |
| 41 | + }, |
| 42 | + "nteract": { |
| 43 | + "transient": { |
| 44 | + "deleting": false |
| 45 | + } |
| 46 | + } |
| 47 | + }, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "%%sql\n", |
| 51 | + "--# RUN TO MOVE THE DATES FORWARD TO TODAY\n", |
| 52 | + "UPDATE ckm_conv_processed\n", |
| 53 | + "SET StartTime = DATEADD(day, (SELECT DATEDIFF(CURRENT_DATE, MAX(ConversationDate)) FROM ckm_conv_processed), StartTime),\n", |
| 54 | + " EndTime = DATEADD(day, (SELECT DATEDIFF(CURRENT_DATE, MAX(ConversationDate)) FROM ckm_conv_processed), EndTime),\n", |
| 55 | + " ConversationDate = DATEADD(day, (SELECT DATEDIFF(CURRENT_DATE, MAX(ConversationDate)) FROM ckm_conv_processed), ConversationDate)" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": null, |
| 61 | + "id": "82c35c12-b919-4e55-959a-2300f0412ee0", |
| 62 | + "metadata": { |
| 63 | + "jupyter": { |
| 64 | + "outputs_hidden": false, |
| 65 | + "source_hidden": false |
| 66 | + }, |
| 67 | + "microsoft": { |
| 68 | + "language": "python", |
| 69 | + "language_group": "synapse_pyspark" |
| 70 | + }, |
| 71 | + "nteract": { |
| 72 | + "transient": { |
| 73 | + "deleting": false |
| 74 | + } |
| 75 | + } |
| 76 | + }, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "# This code manipulates sample data that allocates a percentage of the data\n", |
| 80 | + "# across a two weeks period to support storytelling and demo\n", |
| 81 | + "\n", |
| 82 | + "import pandas as pd\n", |
| 83 | + "from datetime import date, datetime, timedelta\n", |
| 84 | + "from pyspark.sql.functions import col\n", |
| 85 | + "\n", |
| 86 | + "df = spark.sql(\"SELECT * FROM ckm_conv_processed\")\n", |
| 87 | + "\n", |
| 88 | + "# Convert string columns to timestamp types\n", |
| 89 | + "df = df.withColumn(\"StartTime\", col(\"StartTime\").cast(\"timestamp\"))\n", |
| 90 | + "df = df.withColumn(\"EndTime\", col(\"EndTime\").cast(\"timestamp\"))\n", |
| 91 | + "df = df.withColumn(\"ConversationDate\", col(\"ConversationDate\").cast(\"timestamp\"))\n", |
| 92 | + "\n", |
| 93 | + "dfp = df.toPandas()\n", |
| 94 | + "dfp = dfp.sample(frac=1) # Randomly shuffle the df\n", |
| 95 | + "\n", |
| 96 | + "# Following list are date weights from Today-0 to Today-13 (two weeks)\n", |
| 97 | + "weights = [30, 26, 5, 5, 5, 5, 15, 2, 2, 1, 1, 1, 1, 1]\n", |
| 98 | + "dfindex = 0 # index loop through all conversations\n", |
| 99 | + "daysback = 0 # start at today and work backwards\n", |
| 100 | + "\n", |
| 101 | + "# Create a default time (e.g., noon) to use when NaT is encountered\n", |
| 102 | + "default_time = datetime.strptime('12:00:00', '%H:%M:%S').time()\n", |
| 103 | + "\n", |
| 104 | + "for row in weights:\n", |
| 105 | + " numconvos = int((row/100.00) * df.count())\n", |
| 106 | + " for i in range(numconvos):\n", |
| 107 | + " # Handle NaT values by using default time when necessary\n", |
| 108 | + " start_time = dfp.at[dfindex, 'StartTime'].time() if pd.notna(dfp.at[dfindex, 'StartTime']) else default_time\n", |
| 109 | + " end_time = dfp.at[dfindex, 'EndTime'].time() if pd.notna(dfp.at[dfindex, 'EndTime']) else default_time\n", |
| 110 | + " conv_time = dfp.at[dfindex, 'ConversationDate'].time() if pd.notna(dfp.at[dfindex, 'ConversationDate']) else default_time\n", |
| 111 | + " \n", |
| 112 | + " # Combine dates with times\n", |
| 113 | + " dfp.at[dfindex, 'StartTime'] = datetime.combine(date.today() - timedelta(days=daysback), start_time)\n", |
| 114 | + " dfp.at[dfindex, 'EndTime'] = datetime.combine(date.today() - timedelta(days=daysback), end_time)\n", |
| 115 | + " dfp.at[dfindex, 'ConversationDate'] = datetime.combine(date.today() - timedelta(days=daysback), conv_time)\n", |
| 116 | + " \n", |
| 117 | + " dfindex += 1\n", |
| 118 | + " daysback += 1\n", |
| 119 | + "\n", |
| 120 | + "# Convert back to Spark DataFrame and save\n", |
| 121 | + "df = spark.createDataFrame(dfp)\n", |
| 122 | + "df.write.format('delta').mode('overwrite').option(\"overwriteSchema\", \"true\").saveAsTable('ckm_conv_processed_temp')\n", |
| 123 | + "df = spark.sql(\"SELECT * FROM ckm_conv_processed_temp\")\n", |
| 124 | + "df.write.format('delta').mode('overwrite').option(\"overwriteSchema\", \"false\").saveAsTable('ckm_conv_processed')" |
| 125 | + ] |
| 126 | + } |
| 127 | + ], |
| 128 | + "metadata": { |
| 129 | + "dependencies": { |
| 130 | + "lakehouse": { |
| 131 | + "default_lakehouse": "e6ad9dad-e3da-4da5-bca6-6572c466b69a", |
| 132 | + "default_lakehouse_name": "ckm_lakehouse", |
| 133 | + "default_lakehouse_workspace_id": "0d98d480-171b-4b4d-a8e7-80fbd031d1a6", |
| 134 | + "known_lakehouses": [ |
| 135 | + { |
| 136 | + "id": "e6ad9dad-e3da-4da5-bca6-6572c466b69a" |
| 137 | + } |
| 138 | + ] |
| 139 | + } |
| 140 | + }, |
| 141 | + "kernel_info": { |
| 142 | + "name": "synapse_pyspark" |
| 143 | + }, |
| 144 | + "kernelspec": { |
| 145 | + "display_name": "Synapse PySpark", |
| 146 | + "language": "Python", |
| 147 | + "name": "synapse_pyspark" |
| 148 | + }, |
| 149 | + "language_info": { |
| 150 | + "name": "python" |
| 151 | + }, |
| 152 | + "microsoft": { |
| 153 | + "language": "python", |
| 154 | + "language_group": "synapse_pyspark", |
| 155 | + "ms_spell_check": { |
| 156 | + "ms_spell_check_language": "en" |
| 157 | + } |
| 158 | + }, |
| 159 | + "nteract": { |
| 160 | + |
| 161 | + }, |
| 162 | + "spark_compute": { |
| 163 | + "compute_id": "/trident/default" |
| 164 | + }, |
| 165 | + "synapse_widget": { |
| 166 | + "state": {}, |
| 167 | + "version": "0.1" |
| 168 | + }, |
| 169 | + "widgets": {} |
| 170 | + }, |
| 171 | + "nbformat": 4, |
| 172 | + "nbformat_minor": 5 |
| 173 | +} |
0 commit comments