You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* @brief Model definition for the 1D Convolution Layer
19
19
* @param[out] output_signal pointer to the output signal, size = out_time * out_channels
20
-
* @param[in] out_time number of time steps in the output
20
+
* @param[in] out_time number of time steps in the output
21
21
* @param[in] out_channels number of output channels for the output of the conv layer
22
22
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
23
-
* @param[in] in_time number of time steps in the input
23
+
* @param[in] in_time number of time steps in the input
24
24
* @param[in] in_channels number of input channels
25
25
* @param[in] padding padding applied to the input before the conv is performed.
26
26
* Note: padding is applied to both the starting and ending of the input, along the time axis
27
-
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
27
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(time step in_time).
28
28
*
29
29
* @param[in] kernel_size kernel size of the conv filter
30
30
* @param[in] params weights, bias and other essential parameters used to describe the layer
* @brief Model definition for the 1D Depthwise Convolution Layer
43
43
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels
44
-
* @param[in] out_time number of time steps in the output
44
+
* @param[in] out_time number of time steps in the output
45
45
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
46
-
* @param[in] in_time number of time steps in the input
46
+
* @param[in] in_time number of time steps in the input
47
47
* @param[in] in_channels number of input channels. The output will have the same number of channels
48
48
* @param[in] padding padding applied to the input before the conv is performed.
49
49
* Note: padding is applied to both the starting and ending of the input, along the time axis
50
-
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
50
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(time step in_time).
51
51
*
52
52
* @param[in] kernel_size kernel size of the conv filter
53
53
* @param[in] params weights, bias and other essential parameters used to describe the layer
* @var W1 pointer to the 1st low-rank component of the weights, size = out_channels * rank
68
68
* @var W2 pointer to the 2nd low-rank component of the weights, size for regular = rank * in_channels * kernel_size, size for depthwise = rank * kernel_size
69
69
* @var B pointer to the bias vector for the convolution, shape = [out_channels]
70
-
* @var rank rank of the weight tensor. A lowrank decomposition typically used to reduce computation and storage
70
+
* @var rank rank of the weight tensor. A low-rank decomposition typically used to reduce computation and storage
* @brief Model definition for the 1D LowRank Convolution Layer
81
-
* @brief Identical to the non-low-rank form. One modification is the mulitplication of the weights handeled within the layer
80
+
* @brief Model definition for the 1D Low-Rank Convolution Layer
81
+
* @brief Identical to the non-low-rank form. One modification is the multiplication of the weights handled within the layer
82
82
* @param[out] output_signal pointer to the output signal, size = out_time * out_channels
83
-
* @param[in] out_time number of time steps in the output
83
+
* @param[in] out_time number of time steps in the output
84
84
* @param[in] out_channels number of output channels for the ouput of the conv layer
85
85
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
86
-
* @param[in] in_time number of time steps in the input
86
+
* @param[in] in_time number of time steps in the input
87
87
* @param[in] in_channels number of input channels
88
88
* @param[in] padding padding applied to the input before the conv is performed.
89
89
* Note: padding is applied to both the starting and ending of the input, along the time axis
90
-
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
90
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(time step in_time).
91
91
*
92
92
* @param[in] kernel_size kernel size of the conv filter
93
93
* @param[in] params weights, bias and other essential parameters used to describe the layer
* @brief Model definition for the 1D Depthwise Convolution Layer
106
-
* @brief Identical to the non-low-rank form. One modification is the mulitplication of the weights handeled witin the layer
105
+
* @brief Model definition for the 1D Low-Rank Depthwise Convolution Layer
106
+
* @brief Identical to the non-low-rank form. One modification is the multiplication of the weights handled within the layer
107
107
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels
108
-
* @param[in] out_time number of time steps in the output
108
+
* @param[in] out_time number of time steps in the output
109
109
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
110
-
* @param[in] in_time number of time steps in the input
110
+
* @param[in] in_time number of time steps in the input
111
111
* @param[in] in_channels number of input channels. The output will have the same number of channels
112
112
* @param[in] padding padding applied to the input before the conv is performed.
113
113
* Note: padding is applied to both the starting and ending of the input, along the time axis
114
-
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
114
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(time step in_time).
115
115
*
116
116
* @param[in] kernel_size kernel size of the conv filter
117
117
* @param[in] params weights, bias and other essential parameters used to describe the layer
@@ -122,20 +122,20 @@ int conv1d_lr(float *output_signal, unsigned out_time, unsigned out_channels, co
* @brief Model definition for the 1D Average Pooling Layer
131
-
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels. Provide Null/0 incase of in-place computation
132
-
* @param[in] out_time number of time steps in the output
131
+
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels. Provide Null/0 in case of in-place computation
132
+
* @param[in] out_time number of time steps in the output
133
133
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
134
-
* @param[in] in_time number of time steps in the input
134
+
* @param[in] in_time number of time steps in the input
135
135
* @param[in] in_channels number of input channels. The output will have the same number of channels
136
136
* @param[in] padding padding applied to the input before the conv is performed.
137
137
* Note: padding is applied to both the starting and ending of the input, along the time axis
138
-
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
138
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(time step in_time).
139
139
*
140
140
* @param[in] kernel_size kernel size of the pool filter
141
141
* @param[in] activations an integer to choose the type of activation function.
0 commit comments