9
9
* @var W pointer to convolutional weights W, size for regular = out_channels*in_channels*kernel_size, size for depth based = out_channels*kernel_size
10
10
* @var B pointer to the bias vector for the convolution, shape = [out_channels]
11
11
*/
12
- typedef struct ConvLayers_Params {
13
- float * W ;
14
- float * B ;
12
+ typedef struct ConvLayers_Params {
13
+ float * W ;
14
+ float * B ;
15
15
} ConvLayers_Params ;
16
16
17
17
/**
@@ -31,9 +31,9 @@ typedef struct ConvLayers_Params{
31
31
* 2: tanh
32
32
* 3: relu
33
33
*/
34
- int Conv1D (float * output_signal , unsigned out_T , unsigned out_channels , const float * input_signal ,
35
- unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
36
- const void * params , int activations );
34
+ int conv1d (float * output_signal , unsigned out_T , unsigned out_channels , const float * input_signal ,
35
+ unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
36
+ const void * params , int activations );
37
37
38
38
/**
39
39
* @brief Model definition for the 1D Depthwise Convolution Layer
@@ -51,9 +51,9 @@ int Conv1D(float *output_signal, unsigned out_T, unsigned out_channels, const fl
51
51
* 2: tanh
52
52
* 3: relu
53
53
*/
54
- int Conv1D_Depth (float * output_signal , unsigned out_T , const float * input_signal ,
55
- unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
56
- const void * params , int activations );
54
+ int conv1d_depth (float * output_signal , unsigned out_T , const float * input_signal ,
55
+ unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
56
+ const void * params , int activations );
57
57
58
58
59
59
// Low Rank Convolution
@@ -64,11 +64,11 @@ int Conv1D_Depth(float *output_signal, unsigned out_T, const float *input_signal
64
64
* @var B pointer to the bias vector for the convolution, shape = [out_channels]
65
65
* @var rank rank of the weight tensor. A low rank decomposition typically used to reduce computation and storage
66
66
*/
67
- typedef struct ConvLayers_LR_Params {
68
- float * W1 ;
69
- float * W2 ;
70
- float * B ;
71
- unsigned rank ;
67
+ typedef struct ConvLayers_LR_Params {
68
+ float * W1 ;
69
+ float * W2 ;
70
+ float * B ;
71
+ unsigned rank ;
72
72
} ConvLayers_LR_Params ;
73
73
74
74
/**
@@ -89,9 +89,9 @@ typedef struct ConvLayers_LR_Params{
89
89
* 2: tanh
90
90
* 3: relu
91
91
*/
92
- int Conv1D_LR (float * output_signal , unsigned out_T , unsigned out_channels , const float * input_signal ,
93
- unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
94
- const void * params , int activations );
92
+ int conv1d_lr (float * output_signal , unsigned out_T , unsigned out_channels , const float * input_signal ,
93
+ unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
94
+ const void * params , int activations );
95
95
96
96
/**
97
97
* @brief Model definition for the 1D Depthwise Convolution Layer
@@ -110,9 +110,9 @@ int Conv1D_LR(float *output_signal, unsigned out_T, unsigned out_channels, const
110
110
* 2: tanh
111
111
* 3: relu
112
112
*/
113
- int Conv1D_Depth_LR (float * output_signal , unsigned out_T , const float * input_signal ,
114
- unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
115
- const void * params , int activations );
113
+ int conv1d_depth_lr (float * output_signal , unsigned out_T , const float * input_signal ,
114
+ unsigned in_T , unsigned in_channels , int padding , unsigned kernel_size ,
115
+ const void * params , int activations );
116
116
117
117
// Auxillary Layers
118
118
/**
@@ -130,8 +130,8 @@ int Conv1D_Depth_LR(float *output_signal, unsigned out_T, const float *input_sig
130
130
* 2: tanh
131
131
* 3: relu
132
132
*/
133
- int AvgPool1D (float * output_signal , unsigned out_T , const float * input_signal , unsigned in_T , unsigned in_channels ,
134
- int padding , unsigned kernel_size , int activations );
133
+ int avgpool1d (float * output_signal , unsigned out_T , const float * input_signal , unsigned in_T , unsigned in_channels ,
134
+ int padding , unsigned kernel_size , int activations );
135
135
136
136
/**
137
137
* @brief Model definition for the 1D batch Normalization Layer
@@ -147,6 +147,7 @@ int AvgPool1D(float *output_signal, unsigned out_T, const float *input_signal, u
147
147
* @param[in] in_place in place computation of the batchnorm i.e. the output is stored in place of the input signal. Storage efficient
148
148
* @param[in] eps a very small +ve value to avoid division by 0. For the default value, assign = 0.00001
149
149
*/
150
- int BatchNorm1d (float * output_signal , float * input_signal , unsigned in_T , unsigned in_channels ,
151
- float * mean , float * var , unsigned affine , float * gamma , float * beta , unsigned in_place , float eps );
152
- #endif
150
+ int batchnorm1d (float * output_signal , float * input_signal , unsigned in_T , unsigned in_channels ,
151
+ float * mean , float * var , unsigned affine , float * gamma , float * beta , unsigned in_place , float eps );
152
+
153
+ #endif
0 commit comments