You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+2Lines changed: 2 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -4,6 +4,8 @@
4
4
5
5
MLOps will help you to understand how to build the Continuous Integration and Continuous Delivery pipeline for a ML/AI project. We will be using the Azure DevOps Project for build and release/deployment pipelines along with Azure ML services for model retraining pipeline, model management and operationalization.
6
6
7
+

8
+
7
9
This template contains code and pipeline definition for a machine learning project demonstrating how to automate an end to end ML/AI workflow. The build pipelines include DevOps tasks for data sanity test, unit test, model training on different compute targets, model version management, model evaluation/model selection, model deployment as realtime web service, staged deployment to QA/prod and integration testing.
0 commit comments