Skip to content

Commit 53dd443

Browse files
anand-371eedorenko
authored andcommitted
Update README.md (#62)
some typos found in README.md newly->the newly environemt->environment
1 parent 97505df commit 53dd443

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -47,15 +47,15 @@ This reference architecture shows how to implement continuous integration (CI),
4747

4848
- **Train Model** task executes model training script on Azure ML Compute. It outputs a [model](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#model) file which is stored in the [run history](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#run).
4949

50-
- **Evaluate Model** task evaluates the performance of newly trained model with the model in production. If the new model performs better than the production model, the following steps are executed. If not, they will be skipped.
50+
- **Evaluate Model** task evaluates the performance of the newly trained model with the model in production. If the new model performs better than the production model, the following steps are executed. If not, they will be skipped.
5151

5252
- **Register Model** task takes the improved model and registers it with the [Azure ML Model registry](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#model-registry). This allows us to version control it.
5353

5454
### Deploy Model
5555

5656
Once you have registered your ML model, you can use Azure ML + Azure DevOps to deploy it.
5757

58-
[Azure DevOps release pipeline](https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops) packages the new model along with the scoring file and its python dependencies into a [docker image](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#image) and pushes it to [Azure Container Registry](https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro). This image is used to deploy the model as [web service](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#web-service) across QA and Prod environments. The QA environment is running on top of [Azure Container Instances (ACI)](https://azure.microsoft.com/en-us/services/container-instances/) and the Prod environemt is built with [Azure Kubernetes Service (AKS)](https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes).
58+
[Azure DevOps release pipeline](https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops) packages the new model along with the scoring file and its python dependencies into a [docker image](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#image) and pushes it to [Azure Container Registry](https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro). This image is used to deploy the model as [web service](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture#web-service) across QA and Prod environments. The QA environment is running on top of [Azure Container Instances (ACI)](https://azure.microsoft.com/en-us/services/container-instances/) and the Prod environment is built with [Azure Kubernetes Service (AKS)](https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes).
5959

6060

6161
### Repo Details

0 commit comments

Comments
 (0)