|
61 | 61 | }, |
62 | 62 | { |
63 | 63 | "cell_type": "code", |
64 | | - "execution_count": 6, |
| 64 | + "execution_count": 3, |
65 | 65 | "metadata": {}, |
66 | 66 | "outputs": [ |
67 | 67 | { |
|
73 | 73 | " 84.00166666666]]}" |
74 | 74 | ] |
75 | 75 | }, |
76 | | - "execution_count": 6, |
| 76 | + "execution_count": 3, |
77 | 77 | "metadata": {}, |
78 | 78 | "output_type": "execute_result" |
79 | 79 | } |
|
95 | 95 | }, |
96 | 96 | { |
97 | 97 | "cell_type": "code", |
98 | | - "execution_count": 7, |
| 98 | + "execution_count": 6, |
99 | 99 | "metadata": {}, |
100 | 100 | "outputs": [ |
101 | 101 | { |
|
112 | 112 | "buffer = 0.1\n", |
113 | 113 | "bbox = [longitude - buffer, latitude - buffer, longitude + buffer, latitude + buffer]\n", |
114 | 114 | "search = catalog.search(collections=\"3dep-seamless\", bbox=bbox)\n", |
115 | | - "items = list(search.get_items())\n", |
| 115 | + "items = list(search.item_collection())\n", |
116 | 116 | "print(f\"{len(items)} items found\")" |
117 | 117 | ] |
118 | 118 | }, |
|
128 | 128 | }, |
129 | 129 | { |
130 | 130 | "cell_type": "code", |
131 | | - "execution_count": 12, |
| 131 | + "execution_count": 7, |
132 | 132 | "metadata": {}, |
133 | 133 | "outputs": [], |
134 | 134 | "source": [ |
|
146 | 146 | }, |
147 | 147 | { |
148 | 148 | "cell_type": "code", |
149 | | - "execution_count": 13, |
| 149 | + "execution_count": 17, |
150 | 150 | "metadata": {}, |
151 | 151 | "outputs": [], |
152 | 152 | "source": [ |
153 | 153 | "import stackstac\n", |
| 154 | + "import warnings\n", |
| 155 | + "\n", |
| 156 | + "warnings.filterwarnings(\"ignore\", message=\"The argument\")\n", |
154 | 157 | "\n", |
155 | 158 | "low_res_data = stackstac.stack(items_low_res, bounds=bbox).squeeze().compute()\n", |
156 | 159 | "high_res_data = stackstac.stack(items_high_res, bounds=bbox).squeeze().compute()" |
|
164 | 167 | { |
165 | 168 | "data": { |
166 | 169 | "text/html": [ |
167 | | - "<img src=\"https://ai4edatasetspublicassets.blob.core.windows.net/assets/notebook-output/datasets-3dep-3dep-seamless-example.ipynb/14.png\"/>" |
| 170 | + "<img src=\"https://ai4edatasetspublicassets.blob.core.windows.net/assets/notebook-output/.-datasets-3dep-3dep-seamless-example.ipynb/14.png\"/>" |
168 | 171 | ], |
169 | 172 | "text/plain": [ |
170 | | - "<Figure size 1728x864 with 2 Axes>" |
| 173 | + "<Figure size 2400x1200 with 2 Axes>" |
171 | 174 | ] |
172 | 175 | }, |
173 | 176 | "metadata": {}, |
|
177 | 180 | "source": [ |
178 | 181 | "import matplotlib.pyplot as plt\n", |
179 | 182 | "\n", |
180 | | - "plt.style.use(\"seaborn-talk\")\n", |
181 | | - "\n", |
182 | 183 | "fig, axes = plt.subplots(ncols=2, figsize=(24, 12), sharex=True, sharey=True)\n", |
183 | 184 | "low_res_data.plot.imshow(ax=axes[0], add_colorbar=False)\n", |
184 | 185 | "high_res_data.plot.imshow(ax=axes[1], add_colorbar=False)\n", |
|
207 | 208 | "name": "python", |
208 | 209 | "nbconvert_exporter": "python", |
209 | 210 | "pygments_lexer": "ipython3", |
210 | | - "version": "3.9.10" |
| 211 | + "version": "3.11.8" |
211 | 212 | }, |
212 | 213 | "widgets": { |
213 | 214 | "application/vnd.jupyter.widget-state+json": { |
214 | | - "state": {}, |
| 215 | + "state": { |
| 216 | + "550e9c6c01c647a9afe71d92d7471681": { |
| 217 | + "model_module": "@jupyter-widgets/base", |
| 218 | + "model_module_version": "2.0.0", |
| 219 | + "model_name": "LayoutModel", |
| 220 | + "state": {} |
| 221 | + }, |
| 222 | + "821e2fa4ecba410ab745f3f401f362c4": { |
| 223 | + "model_module": "@jupyter-widgets/controls", |
| 224 | + "model_module_version": "2.0.0", |
| 225 | + "model_name": "VBoxModel", |
| 226 | + "state": { |
| 227 | + "layout": "IPY_MODEL_550e9c6c01c647a9afe71d92d7471681" |
| 228 | + } |
| 229 | + } |
| 230 | + }, |
215 | 231 | "version_major": 2, |
216 | 232 | "version_minor": 0 |
217 | 233 | } |
|
0 commit comments