|
| 1 | +""" |
| 2 | +
|
| 3 | +Loop should not large change exclude |
| 4 | +- Action Choice[current data loader & spec] |
| 5 | +- other should share |
| 6 | + - Propose[choice] => Task[Choice] => CoSTEER => |
| 7 | + - |
| 8 | +
|
| 9 | +Extra feature: |
| 10 | +- cache |
| 11 | +
|
| 12 | +
|
| 13 | +File structure |
| 14 | +- ___init__.py: the entrance/agent of coder |
| 15 | +- evaluator.py |
| 16 | +- conf.py |
| 17 | +- exp.py: everything under the experiment, e.g. |
| 18 | + - Task |
| 19 | + - Experiment |
| 20 | + - Workspace |
| 21 | +- test.py |
| 22 | + - Each coder could be tested. |
| 23 | +""" |
| 24 | + |
| 25 | +import json |
| 26 | +import re |
| 27 | +from pathlib import Path |
| 28 | +from typing import Dict |
| 29 | + |
| 30 | +from rdagent.app.data_science.conf import DS_RD_SETTING |
| 31 | +from rdagent.components.coder.CoSTEER import CoSTEER |
| 32 | +from rdagent.components.coder.CoSTEER.evaluators import ( |
| 33 | + CoSTEERMultiEvaluator, |
| 34 | + CoSTEERSingleFeedback, |
| 35 | +) |
| 36 | +from rdagent.components.coder.CoSTEER.evolving_strategy import ( |
| 37 | + MultiProcessEvolvingStrategy, |
| 38 | +) |
| 39 | +from rdagent.components.coder.CoSTEER.knowledge_management import ( |
| 40 | + CoSTEERQueriedKnowledge, |
| 41 | +) |
| 42 | +from rdagent.components.coder.data_science.conf import ( |
| 43 | + DSCoderCoSTEERSettings, |
| 44 | + get_ds_env, |
| 45 | +) |
| 46 | +from rdagent.components.coder.data_science.pipeline.eval import PipelineCoSTEEREvaluator |
| 47 | +from rdagent.components.coder.data_science.raw_data_loader.eval import ( |
| 48 | + DataLoaderCoSTEEREvaluator, |
| 49 | +) |
| 50 | +from rdagent.components.coder.data_science.raw_data_loader.exp import DataLoaderTask |
| 51 | +from rdagent.core.exception import CoderError |
| 52 | +from rdagent.core.experiment import FBWorkspace |
| 53 | +from rdagent.core.scenario import Scenario |
| 54 | +from rdagent.oai.llm_utils import APIBackend |
| 55 | +from rdagent.utils.agent.ret import PythonAgentOut |
| 56 | +from rdagent.utils.agent.tpl import T |
| 57 | + |
| 58 | +DIRNAME = Path(__file__).absolute().resolve().parent |
| 59 | + |
| 60 | + |
| 61 | +class PipelineMultiProcessEvolvingStrategy(MultiProcessEvolvingStrategy): |
| 62 | + def implement_one_task( |
| 63 | + self, |
| 64 | + target_task: DataLoaderTask, |
| 65 | + queried_knowledge: CoSTEERQueriedKnowledge | None = None, |
| 66 | + workspace: FBWorkspace | None = None, |
| 67 | + prev_task_feedback: CoSTEERSingleFeedback | None = None, |
| 68 | + ) -> dict[str, str]: |
| 69 | + competition_info = self.scen.get_scenario_all_desc() |
| 70 | + runtime_environment = self.scen.get_runtime_environment() |
| 71 | + data_folder_info = self.scen.processed_data_folder_description |
| 72 | + pipeline_task_info = target_task.get_task_information() |
| 73 | + |
| 74 | + queried_similar_successful_knowledge = ( |
| 75 | + queried_knowledge.task_to_similar_task_successful_knowledge[pipeline_task_info] |
| 76 | + if queried_knowledge is not None |
| 77 | + else [] |
| 78 | + ) |
| 79 | + queried_former_failed_knowledge = ( |
| 80 | + queried_knowledge.task_to_former_failed_traces[pipeline_task_info] if queried_knowledge is not None else [] |
| 81 | + ) |
| 82 | + queried_former_failed_knowledge = ( |
| 83 | + [ |
| 84 | + knowledge |
| 85 | + for knowledge in queried_former_failed_knowledge[0] |
| 86 | + if knowledge.implementation.file_dict.get("main.py") != workspace.file_dict.get("main.py") |
| 87 | + ], |
| 88 | + queried_former_failed_knowledge[1], |
| 89 | + ) |
| 90 | + |
| 91 | + system_prompt = T(".prompts:pipeline_coder.system").r( |
| 92 | + task_desc=pipeline_task_info, |
| 93 | + queried_similar_successful_knowledge=queried_similar_successful_knowledge, |
| 94 | + queried_former_failed_knowledge=queried_former_failed_knowledge[0], |
| 95 | + out_spec=PythonAgentOut.get_spec(), |
| 96 | + runtime_environment=runtime_environment, |
| 97 | + spec=T("scenarios.data_science.share:component_spec.Pipeline").r(), |
| 98 | + ) |
| 99 | + user_prompt = T(".prompts:pipeline_coder.user").r( |
| 100 | + competition_info=competition_info, |
| 101 | + folder_spec=data_folder_info, |
| 102 | + latest_code=workspace.file_dict.get("main.py"), |
| 103 | + latest_code_feedback=prev_task_feedback, |
| 104 | + ) |
| 105 | + |
| 106 | + for _ in range(5): |
| 107 | + pipeline_code = PythonAgentOut.extract_output( |
| 108 | + APIBackend().build_messages_and_create_chat_completion( |
| 109 | + user_prompt=user_prompt, |
| 110 | + system_prompt=system_prompt, |
| 111 | + ) |
| 112 | + ) |
| 113 | + if pipeline_code != workspace.file_dict.get("main.py"): |
| 114 | + break |
| 115 | + else: |
| 116 | + user_prompt = user_prompt + "\nPlease avoid generating same code to former code!" |
| 117 | + else: |
| 118 | + raise CoderError("Failed to generate a new pipeline code.") |
| 119 | + |
| 120 | + return { |
| 121 | + "main.py": pipeline_code, |
| 122 | + } |
| 123 | + |
| 124 | + def assign_code_list_to_evo(self, code_list: list[dict[str, str]], evo): |
| 125 | + """ |
| 126 | + Assign the code list to the evolving item. |
| 127 | +
|
| 128 | + The code list is aligned with the evolving item's sub-tasks. |
| 129 | + If a task is not implemented, put a None in the list. |
| 130 | + """ |
| 131 | + for index in range(len(evo.sub_tasks)): |
| 132 | + if code_list[index] is None: |
| 133 | + continue |
| 134 | + if evo.sub_workspace_list[index] is None: |
| 135 | + # evo.sub_workspace_list[index] = FBWorkspace(target_task=evo.sub_tasks[index]) |
| 136 | + evo.sub_workspace_list[index] = evo.experiment_workspace |
| 137 | + evo.sub_workspace_list[index].inject_files(**code_list[index]) |
| 138 | + return evo |
| 139 | + |
| 140 | + |
| 141 | +class PipelineCoSTEER(CoSTEER): |
| 142 | + def __init__( |
| 143 | + self, |
| 144 | + scen: Scenario, |
| 145 | + *args, |
| 146 | + **kwargs, |
| 147 | + ) -> None: |
| 148 | + settings = DSCoderCoSTEERSettings() |
| 149 | + eva = CoSTEERMultiEvaluator( |
| 150 | + PipelineCoSTEEREvaluator(scen=scen), scen=scen |
| 151 | + ) # Please specify whether you agree running your eva in parallel or not |
| 152 | + es = PipelineMultiProcessEvolvingStrategy(scen=scen, settings=settings) |
| 153 | + |
| 154 | + super().__init__( |
| 155 | + *args, |
| 156 | + settings=settings, |
| 157 | + eva=eva, |
| 158 | + es=es, |
| 159 | + evolving_version=2, |
| 160 | + scen=scen, |
| 161 | + max_loop=DS_RD_SETTING.coder_max_loop, |
| 162 | + **kwargs, |
| 163 | + ) |
0 commit comments