|
| 1 | +from opto import trace |
| 2 | +from opto.trace import node, bundle, model, ExecutionError |
| 3 | +from opto.optimizers import OptoPrime |
| 4 | + |
| 5 | + |
| 6 | +@trace.model |
| 7 | +class Agent: |
| 8 | + |
| 9 | + def __init__(self, system_prompt): |
| 10 | + self.system_prompt = system_prompt |
| 11 | + self.instruct1 = trace.node("Decide the language", trainable=True) |
| 12 | + self.instruct2 = trace.node("Extract name if it's there", trainable=True) |
| 13 | + |
| 14 | + def __call__(self, user_query): |
| 15 | + response = trace.operators.call_llm(self.system_prompt, |
| 16 | + self.instruct1, user_query) |
| 17 | + en_or_es = self.decide_lang(response) |
| 18 | + |
| 19 | + user_name = trace.operators.call_llm(self.system_prompt, |
| 20 | + self.instruct2, user_query) |
| 21 | + greeting = self.greet(en_or_es, user_name) |
| 22 | + |
| 23 | + return greeting |
| 24 | + |
| 25 | + @trace.bundle(trainable=True) |
| 26 | + def decide_lang(self, response): |
| 27 | + """Map the language into a variable""" |
| 28 | + return |
| 29 | + |
| 30 | + @trace.bundle(trainable=True) |
| 31 | + def greet(self, lang, user_name): |
| 32 | + """Produce a greeting based on the language""" |
| 33 | + greeting = "Hola" |
| 34 | + return f"{greeting}, {user_name}!" |
| 35 | + |
| 36 | + |
| 37 | +def feedback_fn(generated_response, gold_label='en'): |
| 38 | + if gold_label == 'en' and 'Hello' in generated_response: |
| 39 | + return "Correct" |
| 40 | + elif gold_label == 'es' and 'Hola' in generated_response: |
| 41 | + return "Correct" |
| 42 | + else: |
| 43 | + return "Incorrect" |
| 44 | + |
| 45 | + |
| 46 | +def train(): |
| 47 | + epoch = 3 |
| 48 | + agent = Agent("You are a sales assistant.") |
| 49 | + optimizer = OptoPrime(agent.parameters()) |
| 50 | + |
| 51 | + for i in range(epoch): |
| 52 | + print(f"Training Epoch {i}") |
| 53 | + try: |
| 54 | + greeting = agent("Hola, soy Juan.") |
| 55 | + feedback = feedback_fn(greeting.data, 'es') |
| 56 | + except ExecutionError as e: |
| 57 | + greeting = e.exception_node |
| 58 | + feedback, terminal, reward = greeting.data, False, 0 |
| 59 | + |
| 60 | + optimizer.zero_feedback() |
| 61 | + optimizer.backward(greeting, feedback) |
| 62 | + optimizer.step(verbose=True) |
| 63 | + |
| 64 | + if feedback == 'Correct': |
| 65 | + break |
| 66 | + |
| 67 | + return agent |
| 68 | + |
| 69 | + |
| 70 | +class CorrectAgent: |
| 71 | + |
| 72 | + def __init__(self, system_prompt): |
| 73 | + self.system_prompt = system_prompt |
| 74 | + self.instruct1 = node("Decide the language: es or en?", trainable=True) |
| 75 | + self.instruct2 = node("Extract name if it's there", trainable=True) |
| 76 | + |
| 77 | + def __call__(self, user_query): |
| 78 | + response = trace.operators.call_llm(self.system_prompt, self.instruct1, user_query) |
| 79 | + en_or_es = self.decide_lang(response) |
| 80 | + |
| 81 | + user_name = trace.operators.call_llm(self.system_prompt, self.instruct2, user_query) |
| 82 | + greeting = self.greet(en_or_es, user_name) |
| 83 | + |
| 84 | + return greeting |
| 85 | + |
| 86 | + @bundle(trainable=True) |
| 87 | + def decide_lang(self, response): |
| 88 | + """Map the language into a variable""" |
| 89 | + return 'es' if 'es' or 'spanish' in response.lower() else 'en' |
| 90 | + |
| 91 | + @bundle(trainable=True) |
| 92 | + def greet(self, lang, user_name): |
| 93 | + """Produce a greeting based on the language""" |
| 94 | + greeting = "Hola" if lang.lower() == "es" else "Hello" |
| 95 | + return f"{greeting}, {user_name}!" |
0 commit comments