Skip to content

Commit 1149bc9

Browse files
author
Ori Levari
authored
update net core readme (#164)
1 parent bb51359 commit 1149bc9

File tree

2 files changed

+8
-13
lines changed

2 files changed

+8
-13
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,7 @@ These generic examples show how to use various models and input feeds with Windo
3535
- **[SqueezeNetObjectDetection\UWP\cs](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)**: a UWP C# app that uses the SqueezeNet model to detect the predominant object in an image.
3636
- **[SqueezeNetObjectDetection\UWP\js](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/js)**: a UWP Javascript app that uses SqueezeNet model to detect the predominant object in an image.
3737
- **[SqueezeNetObjectDetection\Desktop\cpp](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)**: a classic desktop C++/WinRT app that uses the SqueezeNet model to detect the predominant object in an image.
38+
- **[SqueezeNetObjectDetection\NETCore\cs](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)**: a .NET Core 2 application that uses the SqueezeNet model to detect the predominant object in an image.
3839
- **[MNIST\UWP\cs](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/MNIST/Tutorial/cs)**: a UWP C# app that uses the MNIST model to detect numberic characters.
3940
- **[MNIST\UWP\cppcx](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/MNIST/UWP)**: a UWP C++/CX app that uses the MNIST model to detect numberic characters.
4041
- **[CustomTensorization](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/CustomTensorization)**: a Windows Console Application (C++/WinRT) that shows how to do custom tensorization.

Samples/SqueezeNetObjectDetection/NETCore/cs/README.md

Lines changed: 7 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -21,20 +21,14 @@ The file path for the Windows.winmd file may be: ```C:\Program Files (x86)\Windo
2121
1. If you download the samples ZIP, be sure to unzip the entire archive, not just the folder with the sample you want to build.
2222
2. Start Microsoft Visual Studio 2017 and select **File > Open > Project/Solution**.
2323
3. Starting in the folder where you unzipped the samples, go to the **Samples** subfolder, then the subfolder for this sample (**SqueezeNetObjectDetection). Double-click the Visual Studio solution file (.sln).
24-
4. Confirm that the project (SqueezeNetObjectDetectionNC) is pointed to the correct SDK that you installed (e.g. 17763). You can do this by right-clicking the project in the **Solution Explorer**, selecting **Properties**, and modifying the **Windows SDK Version**.
25-
5. Confirm that you are set for the right configuration and platform (for example: Debug, x64).
26-
6. Build the solution by right clicking the project in **Solution Explorer** and selecting Build (**Ctrl+Shift+B**).
24+
4. Confirm that you are set for the right configuration and platform (for example: Debug, x64).
25+
5. Build the solution by right clicking the project in **Solution Explorer** and selecting Build (**Ctrl+Shift+B**).
2726

28-
## Run the sample
27+
## Running the sample
2928

30-
1. Make sure **Labels.json** is copied into the folder with the built executable.
31-
2. Open a Command Prompt (in the Windows 10 search bar, type **cmd** and press **Enter**).
32-
3. Change the current folder to the folder containing the built EXE (`cd <path-to-exe>`).
33-
4. Run the executable as shown below. Make sure to replace the install location with what matches yours:
34-
```
35-
SqueezeNetObjectDetection.exe C:\Repos\Windows-Machine-Learning\SharedContent\models\SqueezeNet.onnx C:\Repos\Windows-Machine-Learning\SharedContent\media\kitten_224.png
36-
```
37-
5. You should get output similar to the following:
29+
- To debug the sample and then run it, press F5 or select Debug > Start Debugging. To run the sample without debugging, press Ctrl+F5 or selectDebug > Start Without Debugging.
30+
31+
- You should get output similar to the following:
3832
```
3933
Loading modelfile 'C:\Repos\Windows-Machine-Learning\SharedContent\models\SqueezeNet.onnx' on the 'default' device
4034
model file loaded in 421 ticks
@@ -49,4 +43,4 @@ The file path for the Windows.winmd file may be: ```C:\Program Files (x86)\Windo
4943

5044
## License
5145

52-
MIT. See [LICENSE file](https://github.com/Microsoft/Windows-Machine-Learning/blob/master/LICENSE).
46+
MIT. See [LICENSE file](https://github.com/Microsoft/Windows-Machine-Learning/blob/master/LICENSE).

0 commit comments

Comments
 (0)