Skip to content

Commit 7abea32

Browse files
author
Sheil Kumar
committed
add tut samples
1 parent f2d7f8d commit 7abea32

File tree

1 file changed

+27
-19
lines changed

1 file changed

+27
-19
lines changed

README.md

Lines changed: 27 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -46,32 +46,32 @@ Windows ML offers machine learning inferencing via the inbox Windows SDK as well
4646
Learn mode [here](https://docs.microsoft.com/en-us/windows/ai/windows-ml/get-started).
4747

4848
## Model Samples
49-
In this section you will find various model samples for a variety of scenarios across the different Windows ML API offerings.
49+
In this section you will find various model samples for a variety of scenarios across the different Windows ML API offerings.
5050

5151
**Image Classification**
5252

5353
A subdomain of computer vision in which an algorithm looks at an image and assigns it a tag from a collection of predefined tags or categories that it has been trained on.
5454

5555
| Windows App Type <br/>Distribution | UWP<br/>In-Box | UWP<br/>NuGet | Desktop<br/>In-Box | Desktop<br/>NuGet |
5656
|------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
57-
| [AlexNet](https://github.com/onnx/models/raw/master/vision/classification/alexnet/model/bvlcalexnet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
58-
| [CaffeNet](https://github.com/onnx/models/raw/master/vision/classification/caffenet/model/caffenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
59-
| [DenseNet](https://github.com/onnx/models/raw/master/vision/classification/densenet-121/model/densenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
60-
| [EfficientNet](https://github.com/onnx/models/raw/master/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
57+
| [AlexNet](https://github.com/onnx/models/raw/master/vision/classification/alexnet/model/bvlcalexnet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
58+
| [CaffeNet](https://github.com/onnx/models/raw/master/vision/classification/caffenet/model/caffenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
59+
| [DenseNet](https://github.com/onnx/models/raw/master/vision/classification/densenet-121/model/densenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
60+
| [EfficientNet](https://github.com/onnx/models/raw/master/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
6161
| Emoji8 | [✔️C#](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/Emoji8/UWP/cs) | |
62-
| [GoogleNet](https://github.com/onnx/models/raw/master/vision/classification/inception_and_googlenet/googlenet/model/googlenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
63-
| [InceptionV1](https://github.com/onnx/models/raw/master/vision/classification/inception_and_googlenet/inception_v1/model/inception-v1-9.) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
64-
| [InceptionV2](https://github.com/onnx/models/raw/master/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
62+
| [GoogleNet](https://github.com/onnx/models/raw/master/vision/classification/inception_and_googlenet/googlenet/model/googlenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
63+
| [InceptionV1](https://github.com/onnx/models/raw/master/vision/classification/inception_and_googlenet/inception_v1/model/inception-v1-9.) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
64+
| [InceptionV2](https://github.com/onnx/models/raw/master/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
6565
| [MNIST](https://github.com/onnx/models/tree/master/vision/classification/mnist) | [✔️C++/CX](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/MNIST/UWP)<br/>[✔️C#](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/MNIST/Tutorial/cs)<br/> | |
66-
| [MobileNetV2](https://github.com/onnx/models/raw/master/vision/classification/mobilenet/model/mobilenetv2-7.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
67-
| [RCNN](https://github.com/onnx/models/raw/master/vision/classification/rcnn_ilsvrc13/model/rcnn-ilsvrc13-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
68-
| [ResNet50](https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet50-caffe2-v1-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
69-
| [ShuffleNetV1](https://github.com/onnx/models/raw/master/vision/classification/shufflenet/model/shufflenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
70-
| [ShuffleNetV2](https://github.com/onnx/models/raw/master/vision/classification/shufflenet/model/shufflenet-v2-10.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
71-
| [SqueezeNet](https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx) | [✔️C#](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/>[✔️JavaScript](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/> | |[✔️C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/> [✔️C# .NET5](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NET5)<br/>[✔️C# .NET Core 2](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NETCore/cs)<br/>|[✔️C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/>[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>[✔️Rust](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/RustSqueezenet)<br/>|
72-
| [VGG19](https://github.com/onnx/models/raw/master/vision/classification/vgg/model/vgg19-7.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
73-
| [VGG19bn](https://github.com/onnx/models/raw/master/vision/classification/vgg/model/vgg19-bn-7.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
74-
| [ZFNet512](https://github.com/onnx/models/raw/master/vision/classification/zfnet-512/model/zfnet512-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
66+
| [MobileNetV2](https://github.com/onnx/models/raw/master/vision/classification/mobilenet/model/mobilenetv2-7.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
67+
| [RCNN](https://github.com/onnx/models/raw/master/vision/classification/rcnn_ilsvrc13/model/rcnn-ilsvrc13-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
68+
| [ResNet50](https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet50-caffe2-v1-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
69+
| [ShuffleNetV1](https://github.com/onnx/models/raw/master/vision/classification/shufflenet/model/shufflenet-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
70+
| [ShuffleNetV2](https://github.com/onnx/models/raw/master/vision/classification/shufflenet/model/shufflenet-v2-10.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
71+
| [SqueezeNet](https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.1-7.onnx) | [✔️C#](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/>[✔️JavaScript](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/> | |[✔️C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/> [✔️C# .NET5](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NET5)<br/>[✔️C# .NET Core 2](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NETCore/cs)<br/>|[✔️C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/>[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>[✔️Rust](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/RustSqueezenet)<br/>|
72+
| [VGG19](https://github.com/onnx/models/raw/master/vision/classification/vgg/model/vgg19-7.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
73+
| [VGG19bn](https://github.com/onnx/models/raw/master/vision/classification/vgg/model/vgg19-bn-7.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
74+
| [ZFNet512](https://github.com/onnx/models/raw/master/vision/classification/zfnet-512/model/zfnet512-9.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
7575

7676
**Style Transfer**
7777

@@ -87,7 +87,7 @@ A computer vision technique that allows us to recompose the content of an image
8787
8888
| | Store App<br/>Inbox API | Store App<br/>NuGet API | Desktop App<br/>Inbox API | Desktop App<br/>NuGet API |
8989
|------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
90-
| [YoloV4](https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/model/yolov4.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/user/sheilk/readme-updates/Samples/WinMLSamplesGallery)<br/>|
90+
| [YoloV4](https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/model/yolov4.onnx) | | ||[✔️C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
9191
9292
-->
9393

@@ -99,6 +99,11 @@ These advanced samples show how to use various binding and evaluation features i
9999
- **[Custom Operator (CPU)](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/CustomOperator)**: a desktop app that defines multiple custom cpu operators. One of these is a debug operator which we invite you to integrate into your own workflow.
100100
- **[Adapter Selection](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/AdapterSelection)**: a desktop app that demonstrates how to choose a specific device adapter for running your model
101101
- **[Plane Identifier](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: a UWP app and a WPF app packaged with the Desktop Bridge, sharing the same model trained using [Azure Custom Vision service](https://customvision.ai/). For step-by-step instructions for this sample, please see the blog post [Upgrade your WinML application to the latest bits](https://blogs.msdn.microsoft.com/appconsult/2018/11/06/upgrade-your-winml-application-to-the-latest-bits/).
102+
- **[Custom Vision and Windows ML](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to train a neural network model to classify images of food using Azure Custom Vision service, export the model to ONNX format, and deploy the model in a Windows Machine Learning application running locally on Windows device.
103+
- **[ML.NET and Windows ML](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: This tutorial shows you how to train a neural network model to classify images of food using ML.NET Model Builder, export the model to ONNX format, and deploy the model in a Windows Machine Learning application running locally on a Windows device.
104+
- **[PyTorch Data Analysis](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to solve a classification task with a neural network using the PyTorch library, export the model to ONNX format and deploy the model with the Windows Machine Learning application that can run on any Windows device.
105+
- **[PyTorch Image Classification](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to train an image classification neural network model using PyTorch, export the model to the ONNX format, and deploy it in a Windows Machine Learning application running locally on your Windows device.
106+
- **[YoloV4 Object Detection](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: This tutorial shows how to build a UWP C# app that uses the YOLOv4 model to detect objects in video streams.
102107

103108
## Developer Tools
104109

@@ -129,7 +134,10 @@ These advanced samples show how to use various binding and evaluation features i
129134

130135
Download for [VS 2017](https://marketplace.visualstudio.com/items?itemName=WinML.mlgen), [VS 2019](https://marketplace.visualstudio.com/items?itemName=WinML.MLGenV2)
131136

132-
- Check out the [Model Samples](#model-samples) and [Advanced Scenario Samples](#advanced-scenarios).
137+
- **[WinML Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery):** explore a variety of ML integration scenarios and models.
138+
139+
- Check out the [Model Samples](#model-samples) and [Advanced Scenario Samples](#advanced-scenarios) to learn how to use Windows ML in your application.
140+
133141

134142

135143

0 commit comments

Comments
 (0)