|
| 1 | +import os |
| 2 | +from typing import Any |
| 3 | + |
| 4 | +from eureka_ml_insights.configs.experiment_config import ExperimentConfig |
| 5 | +from eureka_ml_insights.core import EvalReporting, Inference, PromptProcessing |
| 6 | +from eureka_ml_insights.data_utils import ( |
| 7 | + ASTEvalTransform, |
| 8 | + ColumnRename, |
| 9 | + CopyColumn, |
| 10 | + DataReader, |
| 11 | + HFDataReader, |
| 12 | + MapStringsTransform, |
| 13 | + SequenceTransform, |
| 14 | + AddColumnAndData, |
| 15 | + SamplerTransform, |
| 16 | +) |
| 17 | +from eureka_ml_insights.data_utils.mmlu_utils import ( |
| 18 | + CreateMMLUPrompts, |
| 19 | + MMLUAll, |
| 20 | + MMLUTaskToCategories, |
| 21 | +) |
| 22 | +from eureka_ml_insights.metrics import CountAggregator, MMMUMetric |
| 23 | + |
| 24 | +from eureka_ml_insights.data_utils.data import DataLoader |
| 25 | + |
| 26 | +from eureka_ml_insights.configs import( |
| 27 | + AggregatorConfig, |
| 28 | + DataSetConfig, |
| 29 | + EvalReportingConfig, |
| 30 | + InferenceConfig, |
| 31 | + MetricConfig, |
| 32 | + ModelConfig, |
| 33 | + PipelineConfig, |
| 34 | + PromptProcessingConfig, |
| 35 | +) |
| 36 | + |
| 37 | + |
| 38 | +class MMLU_BASELINE_PIPELINE(ExperimentConfig): |
| 39 | + """ |
| 40 | + This defines an ExperimentConfig pipeline for the MMLU dataset. |
| 41 | + There is no model_config by default and the model config must be passed in via command lime. |
| 42 | + """ |
| 43 | + |
| 44 | + def configure_pipeline(self, model_config: ModelConfig, resume_from: str = None, **kwargs: dict[str, Any] ) -> PipelineConfig: |
| 45 | + |
| 46 | + self.data_processing_comp = PromptProcessingConfig( |
| 47 | + component_type=PromptProcessing, |
| 48 | + data_reader_config=DataSetConfig( |
| 49 | + HFDataReader, |
| 50 | + { |
| 51 | + "path": "cais/mmlu", |
| 52 | + "split": "test", |
| 53 | + "tasks": ["abstract_algebra"], #MMLUAll, |
| 54 | + "transform": SequenceTransform( |
| 55 | + [ |
| 56 | + # ASTEvalTransform(columns=["choices"]), |
| 57 | + CreateMMLUPrompts(), |
| 58 | + ColumnRename(name_mapping={"answer": "ground_truth", "choices": "target_options"}), |
| 59 | + AddColumnAndData("question_type", "multiple-choice"), |
| 60 | + # SamplerTransform(sample_count=10, random_seed=42), |
| 61 | + ] |
| 62 | + ), |
| 63 | + }, |
| 64 | + ), |
| 65 | + output_dir=os.path.join(self.log_dir, "data_processing_output"), |
| 66 | + ignore_failure=False, |
| 67 | + ) |
| 68 | + |
| 69 | + # Configure the inference component |
| 70 | + self.inference_comp = InferenceConfig( |
| 71 | + component_type=Inference, |
| 72 | + model_config=model_config, |
| 73 | + data_loader_config=DataSetConfig( |
| 74 | + DataLoader, |
| 75 | + {"path": os.path.join(self.data_processing_comp.output_dir, "transformed_data.jsonl")}, |
| 76 | + ), |
| 77 | + output_dir=os.path.join(self.log_dir, "inference_result"), |
| 78 | + resume_from=resume_from, |
| 79 | + ) |
| 80 | + |
| 81 | + # Configure the evaluation and reporting component. |
| 82 | + self.evalreporting_comp = EvalReportingConfig( |
| 83 | + component_type=EvalReporting, |
| 84 | + data_reader_config=DataSetConfig( |
| 85 | + DataReader, |
| 86 | + { |
| 87 | + "path": os.path.join(self.inference_comp.output_dir, "inference_result.jsonl"), |
| 88 | + "format": ".jsonl", |
| 89 | + "transform": SequenceTransform( |
| 90 | + [ |
| 91 | + CopyColumn(column_name_src="__hf_task", column_name_dst="category"), |
| 92 | + MapStringsTransform( |
| 93 | + columns=["category"], |
| 94 | + mapping=MMLUTaskToCategories, |
| 95 | + ), |
| 96 | + ] |
| 97 | + ), |
| 98 | + }, |
| 99 | + ), |
| 100 | + metric_config=MetricConfig(MMMUMetric), |
| 101 | + aggregator_configs=[ |
| 102 | + AggregatorConfig(CountAggregator, {"column_names": ["MMMUMetric_result"], "normalize": True}), |
| 103 | + AggregatorConfig( |
| 104 | + CountAggregator, |
| 105 | + {"column_names": ["MMMUMetric_result"], "group_by": "category", "normalize": True}, |
| 106 | + ), |
| 107 | + ], |
| 108 | + output_dir=os.path.join(self.log_dir, "eval_report"), |
| 109 | + ) |
| 110 | + |
| 111 | + # Configure the pipeline |
| 112 | + return PipelineConfig([self.data_processing_comp, self.inference_comp, self.evalreporting_comp], self.log_dir) |
0 commit comments