|
| 1 | +import os |
| 2 | +from typing import Any |
| 3 | + |
| 4 | +from eureka_ml_insights.core import Inference, PromptProcessing |
| 5 | +from eureka_ml_insights.core.data_processing import DataProcessing |
| 6 | +from eureka_ml_insights.core.eval_reporting import EvalReporting |
| 7 | +from eureka_ml_insights.data_utils.ba_calendar_utils import ( |
| 8 | + BA_Calendar_ExtractAnswer, |
| 9 | +) |
| 10 | +from eureka_ml_insights.data_utils.data import ( |
| 11 | + DataLoader, |
| 12 | + DataReader, |
| 13 | + HFDataReader, |
| 14 | +) |
| 15 | +from eureka_ml_insights.metrics.ba_calendar_metrics import BACalendarMetric |
| 16 | +from eureka_ml_insights.metrics.reports import ( |
| 17 | + AverageAggregator, |
| 18 | + BiLevelCountAggregator, |
| 19 | + BiLevelAggregator, |
| 20 | + CountAggregator |
| 21 | +) |
| 22 | + |
| 23 | +from eureka_ml_insights.data_utils.transform import ( |
| 24 | + AddColumn, |
| 25 | + AddColumnAndData, |
| 26 | + ColumnRename, |
| 27 | + CopyColumn, |
| 28 | + ExtractUsageTransform, |
| 29 | + MajorityVoteTransform, |
| 30 | + MultiplyTransform, |
| 31 | + RunPythonTransform, |
| 32 | + SamplerTransform, |
| 33 | + SequenceTransform, |
| 34 | +) |
| 35 | +from eureka_ml_insights.metrics.ba_calendar_metrics import BACalendarMetric |
| 36 | + |
| 37 | +from ..configs.config import ( |
| 38 | + AggregatorConfig, |
| 39 | + DataProcessingConfig, |
| 40 | + DataSetConfig, |
| 41 | + EvalReportingConfig, |
| 42 | + InferenceConfig, |
| 43 | + MetricConfig, |
| 44 | + ModelConfig, |
| 45 | + PipelineConfig, |
| 46 | + PromptProcessingConfig, |
| 47 | +) |
| 48 | +from ..configs.experiment_config import ExperimentConfig |
| 49 | + |
| 50 | + |
| 51 | +class ARC_AGI_v1_PIPELINE(ExperimentConfig): |
| 52 | + """This class specifies the config for running any benchmark on any model""" |
| 53 | + |
| 54 | + def configure_pipeline(self, model_config=None, resume_from=None, resume_logdir=None, **kwargs) -> PipelineConfig: |
| 55 | + # data preprocessing |
| 56 | + self.data_processing_comp = PromptProcessingConfig( |
| 57 | + component_type=PromptProcessing, |
| 58 | + prompt_template_path=os.path.join( |
| 59 | + os.path.dirname(__file__), "../prompt_templates/arc_agi_templates/arc_agi_v1_basic.jinja" |
| 60 | + ), |
| 61 | + data_reader_config=DataSetConfig( |
| 62 | + HFDataReader, |
| 63 | + { |
| 64 | + "path": "pxferna/ARC-AGI-v1", |
| 65 | + "split": "test", |
| 66 | + } |
| 67 | + ), |
| 68 | + output_dir=os.path.join(self.log_dir, "data_processing_output"), |
| 69 | + ) |
| 70 | + |
| 71 | + # inference component |
| 72 | + self.inference_comp = InferenceConfig( |
| 73 | + component_type=Inference, |
| 74 | + model_config=model_config, |
| 75 | + data_loader_config=DataSetConfig( |
| 76 | + DataLoader, |
| 77 | + {"path": os.path.join(self.data_processing_comp.output_dir, "transformed_data.jsonl")}, |
| 78 | + ), |
| 79 | + output_dir=os.path.join(self.log_dir, "inference_result"), |
| 80 | + resume_from=resume_from, |
| 81 | + max_concurrent=1, |
| 82 | + ) |
| 83 | + |
| 84 | + if resume_logdir: |
| 85 | + self.log_dir = resume_from.split("/")[0:len(resume_from.split("/")) - 1] |
| 86 | + |
| 87 | + # Configure the pipeline |
| 88 | + return PipelineConfig( |
| 89 | + [ |
| 90 | + self.data_processing_comp, |
| 91 | + self.inference_comp, |
| 92 | + ], |
| 93 | + self.log_dir, |
| 94 | + ) |
0 commit comments