|
3 | 3 |
|
4 | 4 | """A module containing embeddings values.""" |
5 | 5 |
|
6 | | -from graphrag.config.enums import TextEmbeddingTarget |
7 | | -from graphrag.config.models.graph_rag_config import GraphRagConfig |
8 | | - |
9 | 6 | entity_title_embedding = "entity.title" |
10 | 7 | entity_description_embedding = "entity.description" |
11 | 8 | relationship_description_embedding = "relationship.description" |
|
25 | 22 | community_full_content_embedding, |
26 | 23 | text_unit_text_embedding, |
27 | 24 | } |
28 | | -required_embeddings: set[str] = { |
| 25 | +default_embeddings: list[str] = [ |
29 | 26 | entity_description_embedding, |
30 | 27 | community_full_content_embedding, |
31 | 28 | text_unit_text_embedding, |
32 | | -} |
33 | | - |
34 | | - |
35 | | -def get_embedded_fields(settings: GraphRagConfig) -> set[str]: |
36 | | - """Get the fields to embed based on the enum or specifically selected embeddings.""" |
37 | | - match settings.embed_text.target: |
38 | | - case TextEmbeddingTarget.all: |
39 | | - return all_embeddings |
40 | | - case TextEmbeddingTarget.required: |
41 | | - return required_embeddings |
42 | | - case TextEmbeddingTarget.selected: |
43 | | - return set(settings.embed_text.names) |
44 | | - case TextEmbeddingTarget.none: |
45 | | - return set() |
46 | | - case _: |
47 | | - msg = f"Unknown embeddings target: {settings.embed_text.target}" |
48 | | - raise ValueError(msg) |
49 | | - |
50 | | - |
51 | | -def get_embedding_settings( |
52 | | - settings: GraphRagConfig, |
53 | | - vector_store_params: dict | None = None, |
54 | | -) -> dict: |
55 | | - """Transform GraphRAG config into settings for workflows.""" |
56 | | - # TEMP |
57 | | - embeddings_llm_settings = settings.get_language_model_config( |
58 | | - settings.embed_text.model_id |
59 | | - ) |
60 | | - vector_store_settings = settings.get_vector_store_config( |
61 | | - settings.embed_text.vector_store_id |
62 | | - ).model_dump() |
63 | | - |
64 | | - # |
65 | | - # If we get to this point, settings.vector_store is defined, and there's a specific setting for this embedding. |
66 | | - # settings.vector_store.base contains connection information, or may be undefined |
67 | | - # settings.vector_store.<vector_name> contains the specific settings for this embedding |
68 | | - # |
69 | | - strategy = settings.embed_text.resolved_strategy( |
70 | | - embeddings_llm_settings |
71 | | - ) # get the default strategy |
72 | | - strategy.update({ |
73 | | - "vector_store": { |
74 | | - **(vector_store_params or {}), |
75 | | - **(vector_store_settings), |
76 | | - } |
77 | | - }) # update the default strategy with the vector store settings |
78 | | - # This ensures the vector store config is part of the strategy and not the global config |
79 | | - return { |
80 | | - "strategy": strategy, |
81 | | - } |
| 29 | +] |
82 | 30 |
|
83 | 31 |
|
84 | 32 | def create_collection_name( |
|
0 commit comments