Skip to content
Open
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions operators/cuda/cuda_ops.cc
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#include "cuda/mul_sigmoid.h"
#include "cuda/negxplus1.h"
#include "cuda/replace_zero.h"
#include "cuda/rotary.h"
#include "cuda/scatter_nd_of_shape.h"
#include "cuda/transpose_cast.h"
#endif
Expand Down Expand Up @@ -36,6 +37,7 @@ FxLoadCustomOpFactory LoadCustomOpClasses_Contrib = []() -> CustomOpArray& {
CustomCudaStructV2("MulSigmoid", contrib::MulSigmoid<float>),
CustomCudaStructV2("NegXPlus1", contrib::NegXPlus1<float>),
CustomCudaStructV2("ReplaceZero", contrib::ReplaceZero<float>),
CustomCudaStructV2("Rotary", contrib::Rotary<float>),
CustomCudaStructV2("ScatterNDOfShape", contrib::ScatterNDOfShape<float>),
#if ORT_API_VERSION >= 16

Expand All @@ -48,6 +50,7 @@ FxLoadCustomOpFactory LoadCustomOpClasses_Contrib = []() -> CustomOpArray& {
CustomCudaStructV2("MulSigmoid", contrib::MulSigmoid<ortc::MFloat16>),
CustomCudaStructV2("NegXPlus1", contrib::NegXPlus1<ortc::MFloat16>),
CustomCudaStructV2("ReplaceZero", contrib::ReplaceZero<ortc::MFloat16>),
CustomCudaStructV2("Rotary", contrib::Rotary<ortc::MFloat16>),
CustomCudaStructV2("ScatterNDOfShape", contrib::ScatterNDOfShape<ortc::MFloat16>),
CustomCudaStructV2("Transpose2DCastFP16", Transpose2DCastFloat32ToFloat16Type),
CustomCudaStructV2("Transpose2DCastFP32", Transpose2DCastFloat16ToFloat32Type)
Expand Down
83 changes: 83 additions & 0 deletions operators/cuda/rotary.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#pragma once
#include "ocos.h"
#include "rotary_impl.cuh"
#include "ortx_common.h"

namespace contrib {

/**
* Y = Rotary(X) is equivalent to if side == LEFT:
*
* N = X.shape[-1]
* Y = X.copy()
* Y[...,:N/2] = X[...,N/2:]
* Y[...,N/2:] = -X[...,:N/2]
*
* And the opposite if side == RIGHT.
*/
template <typename T>
struct Rotary {
template <typename TDict>
OrtxStatus OnModelAttach(const TDict& dict) {
std::string empty;
std::string side = dict.TryToGetAttributeWithDefault("side", empty);
if (side == "left") {
side_ = RotarySide::LEFT;
}
else if (side == "right") {
side_ = RotarySide::RIGHT;
}
else {
return {kOrtxErrorInvalidArgument, "side must be 'left' or 'right'."};
}

return {};
}
OrtxStatus Compute(Ort::Custom::CUDAKernelContext* ctx,
const ortc::Tensor<T>& input,
const ortc::Tensor<int64_t>& split,
ortc::Tensor<T>& output) const {
const T* input_data = input.Data();
auto input_shape = input.Shape();
T* output_data = output.Allocate(input_shape);
auto input_length = input.NumberOfElement();
if (0 == input_length) {
return {};
}

auto shape_split = split.Shape();
if (shape_split.size() != 1 || shape_split[0] != 2) {
return {kOrtxErrorInvalidArgument, "Rotary only works when there are two sides."};
}
const int64_t* split_data = split.Data();
if (split_data[0] != split_data[1]) {
return {kOrtxErrorInvalidArgument, "Only equal split are allowed."};
}
if (split_data[0] * 2 != input_shape[input_shape.size()-1]) {
return {kOrtxErrorInvalidArgument, "Sum of the splits are not equal to the last dimension."};
}

LaunchRotaryKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
input_length,
static_cast<int>(input_shape[input_shape.size()-1]),
input_data,
split_data,
output_data,
side_);
return {};
}

static OrtMemType GetInputMemoryType(size_t input_index) {
if (input_index == 1) // split
return OrtMemType::OrtMemTypeCPUInput;
return OrtMemType::OrtMemTypeDefault;
}

private:
RotarySide side_;
};

} // namespace contrib
81 changes: 81 additions & 0 deletions operators/cuda/rotary_impl.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include "device_prop.cuh"
#include "utils.cuh"
#include "rotary_impl.cuh"
#include "cuda_type.h"

#ifndef CUDA_LONG
#define CUDA_LONG int32_t
#endif

using namespace Ort::Custom;

template <typename T> __device__ __inline__ T _neg(const T x) { return -x; }

#if __CUDA_ARCH__ < 700
template <> __device__ __inline__ half _neg(const half x) {
return __float2half(-__half2float(x));
}
#endif

template <typename T, RotarySide side>
__global__ void RotaryKernel(T *output_data, const T *input_data, CUDA_LONG half_N, CUDA_LONG half_stride) {
CUDA_LONG id = blockDim.x * blockIdx.x + threadIdx.x;
if (id >= half_N)
return;
CUDA_LONG last = id % half_stride;
id = (id - last) * 2 + last;
if (side == RotarySide::RIGHT) {
output_data[id + half_stride] = input_data[id];
output_data[id] = _neg(input_data[id + half_stride]);
} else {
output_data[id + half_stride] = _neg(input_data[id]);
output_data[id] = input_data[id + half_stride];
}
}

template <typename T>
cudaError_t _LaunchRotaryKernel(cudaStream_t stream, int input_length, int last_dim,
const T* input_data, const int64_t* /* split_data */, T* output_data, RotarySide side) {
if (input_length == 0)
return cudaGetLastError();
using TT = typename contrib::CudaT<T>::MappedType;

CUDA_LONG N = static_cast<CUDA_LONG>(input_length);
CUDA_LONG stride = static_cast<CUDA_LONG>(last_dim);

const int num_threads_per_block = 256;
const int num_elements_per_thread =
(N / 2 + num_threads_per_block - 1) / num_threads_per_block;

switch (side) {
case RotarySide::LEFT:
RotaryKernel<TT, RotarySide::LEFT>
<<<num_elements_per_thread, num_threads_per_block, 0, stream>>>(reinterpret_cast<TT*>(output_data),
reinterpret_cast<const TT*>(input_data),
N / 2, stride / 2);
break;
case RotarySide::RIGHT:
RotaryKernel<TT, RotarySide::RIGHT>
<<<num_elements_per_thread, num_threads_per_block, 0, stream>>>(reinterpret_cast<TT*>(output_data),
reinterpret_cast<const TT*>(input_data),
N / 2, stride / 2);
break;
}
return cudaGetLastError();
}

template <>
cudaError_t LaunchRotaryKernel<float>(cudaStream_t stream, int input_length, int last_dim,
const float* input_data, const int64_t* split_data, float* output_data, RotarySide side) {
return _LaunchRotaryKernel(stream, input_length, last_dim, input_data, split_data, output_data, side);
}

template <>
cudaError_t LaunchRotaryKernel<ortc::MFloat16>(cudaStream_t stream, int input_length, int last_dim,
const ortc::MFloat16* input_data, const int64_t* split_data,
ortc::MFloat16* output_data, RotarySide side) {
return _LaunchRotaryKernel(stream, input_length, last_dim, input_data, split_data, output_data, side);
}
15 changes: 15 additions & 0 deletions operators/cuda/rotary_impl.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#pragma once
#include <cuda.h>
#include <cuda_runtime.h>

enum class RotarySide : int {
LEFT = 1,
RIGHT = 2,
};

template <typename T>
cudaError_t LaunchRotaryKernel(cudaStream_t stream, int input_length, int last_dim,
const T* input_data, const int64_t* split_data, T* output_data, RotarySide side);
61 changes: 61 additions & 0 deletions test/cuda/test_cudaops.py
Original file line number Diff line number Diff line change
Expand Up @@ -596,6 +596,67 @@ def test_masked_scatternd_of_shape_standalone_cuda_big(self):
self._masked_scatternd_of_shape_cuda("add", 1, TensorProto.FLOAT, True)
self._masked_scatternd_of_shape_cuda("add", 1, TensorProto.FLOAT16, True)

def _rotary_cuda(self, itype, side, input_shape=(3, 2, 3, 4)):
model2 = helper.make_model(
helper.make_graph(
[
helper.make_node(
"Rotary",
["X", "splits"],
["Y"],
domain="ai.onnx.contrib",
side=side,
)
],
"nd",
[
helper.make_tensor_value_info("X", itype, [None, None, None, None]),
helper.make_tensor_value_info("splits", TensorProto.INT64, [2]),
],
[helper.make_tensor_value_info("Y", itype, [None, None, None, None])],
),
opset_imports=[
helper.make_opsetid("", 18),
helper.make_opsetid("ai.onnx.contrib", 1),
],
ir_version=9,
)

dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
x = (np.arange(np.prod(input_shape)) + 1).reshape(input_shape).astype(dtype)
splits = np.array([x.shape[-1] // 2, x.shape[-1] // 2], dtype=np.int64)

expected = x.copy()
half = x.shape[-1] // 2
if side == "left":
expected[:, :, :, :half] = x[:, :, :, half:]
expected[:, :, :, half:] = -x[:, :, :, :half]
else:
expected[:, :, :, :half] = -x[:, :, :, half:]
expected[:, :, :, half:] = x[:, :, :, :half]

feeds = dict(X=x, splits=splits)
opts = _ort.SessionOptions()
opts.register_custom_ops_library(_get_library_path())
sess = _ort.InferenceSession(model2.SerializeToString(), opts, providers=["CUDAExecutionProvider"])
got = sess.run(None, feeds)[0]
assert_almost_equal(expected, got)

@unittest.skipIf(not has_cuda(), reason="cuda not available")
def test_rotary_cuda(self):
self._rotary_cuda(TensorProto.FLOAT, "left")
self._rotary_cuda(TensorProto.FLOAT, "right")
self._rotary_cuda(TensorProto.FLOAT16, "left")
self._rotary_cuda(TensorProto.FLOAT16, "right")

@unittest.skipIf(not has_cuda(), reason="cuda not available")
def test_bigger_rotary_cuda(self):
sh = (2, 2, 1024, 8)
self._rotary_cuda(TensorProto.FLOAT, "left", input_shape=sh)
self._rotary_cuda(TensorProto.FLOAT, "right", input_shape=sh)
self._rotary_cuda(TensorProto.FLOAT16, "left", input_shape=sh)
self._rotary_cuda(TensorProto.FLOAT16, "right", input_shape=sh)

def _transpose_cast_cuda(self, itype):
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
itype2 = TensorProto.FLOAT if itype == TensorProto.FLOAT16 else TensorProto.FLOAT16
Expand Down