|
| 1 | +#include "model_runner.h" |
| 2 | + |
| 3 | +#include <cstddef> |
| 4 | + |
| 5 | +#include <algorithm> |
| 6 | +#include <chrono> |
| 7 | +#include <filesystem> |
| 8 | +#include <format> |
| 9 | +#include <iterator> |
| 10 | +#include <numeric> |
| 11 | +#include <span> |
| 12 | + |
| 13 | +#include "onnxruntime_cxx_api.h" |
| 14 | + |
| 15 | +namespace model_runner { |
| 16 | + |
| 17 | +namespace { |
| 18 | + |
| 19 | +size_t GetDataTypeSizeInBytes(ONNXTensorElementDataType data_type) { |
| 20 | + switch (data_type) { |
| 21 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E4M3FN: |
| 22 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E4M3FNUZ: |
| 23 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E5M2: |
| 24 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT8E5M2FNUZ: |
| 25 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8: |
| 26 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: |
| 27 | + return 1; |
| 28 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16: |
| 29 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16: |
| 30 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16: |
| 31 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16: |
| 32 | + return 2; |
| 33 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: |
| 34 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: |
| 35 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32: |
| 36 | + return 4; |
| 37 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE: |
| 38 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: |
| 39 | + case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64: |
| 40 | + return 8; |
| 41 | + default: |
| 42 | + throw std::invalid_argument(std::format("unsupported tensor data type: {}", static_cast<int>(data_type))); |
| 43 | + } |
| 44 | +} |
| 45 | + |
| 46 | +void FillTensorWithZeroes(Ort::Value& value) { |
| 47 | + const auto tensor_info = value.GetTensorTypeAndShapeInfo(); |
| 48 | + const auto data_type = tensor_info.GetElementType(); |
| 49 | + const auto num_elements = tensor_info.GetElementCount(); |
| 50 | + const auto data_type_size_in_bytes = GetDataTypeSizeInBytes(data_type); |
| 51 | + const auto data_size_in_bytes = num_elements * data_type_size_in_bytes; |
| 52 | + |
| 53 | + std::byte* data = static_cast<std::byte*>(value.GetTensorMutableRawData()); |
| 54 | + std::fill(data, data + data_size_in_bytes, std::byte{0}); |
| 55 | +} |
| 56 | + |
| 57 | +std::vector<Ort::Value> GetModelInputValues(const Ort::Session& session) { |
| 58 | + const auto num_inputs = session.GetInputCount(); |
| 59 | + |
| 60 | + std::vector<Ort::Value> input_values{}; |
| 61 | + input_values.reserve(num_inputs); |
| 62 | + |
| 63 | + Ort::AllocatorWithDefaultOptions allocator{}; |
| 64 | + |
| 65 | + for (size_t i = 0; i < num_inputs; ++i) { |
| 66 | + auto type_info = session.GetInputTypeInfo(i); |
| 67 | + auto tensor_info = type_info.GetTensorTypeAndShapeInfo(); |
| 68 | + |
| 69 | + auto tensor_shape = tensor_info.GetShape(); |
| 70 | + // make this a static shape |
| 71 | + for (auto& dim : tensor_shape) { |
| 72 | + if (dim == -1) { |
| 73 | + dim = 1; |
| 74 | + } |
| 75 | + } |
| 76 | + |
| 77 | + const auto tensor_data_type = tensor_info.GetElementType(); |
| 78 | + |
| 79 | + auto value = Ort::Value::CreateTensor(allocator, tensor_shape.data(), tensor_shape.size(), tensor_data_type); |
| 80 | + |
| 81 | + FillTensorWithZeroes(value); |
| 82 | + |
| 83 | + input_values.emplace_back(std::move(value)); |
| 84 | + } |
| 85 | + |
| 86 | + return input_values; |
| 87 | +} |
| 88 | + |
| 89 | +std::vector<std::string> GetModelInputOrOutputNames(const Ort::Session& session, bool is_input) { |
| 90 | + const auto num_inputs_or_outputs = is_input ? session.GetInputCount() : session.GetOutputCount(); |
| 91 | + |
| 92 | + std::vector<std::string> names{}; |
| 93 | + names.reserve(num_inputs_or_outputs); |
| 94 | + |
| 95 | + auto allocator = Ort::AllocatorWithDefaultOptions{}; |
| 96 | + for (size_t i = 0; i < num_inputs_or_outputs; ++i) { |
| 97 | + auto name = is_input ? session.GetInputNameAllocated(i, allocator) |
| 98 | + : session.GetOutputNameAllocated(i, allocator); |
| 99 | + names.emplace_back(name.get()); |
| 100 | + } |
| 101 | + |
| 102 | + return names; |
| 103 | +} |
| 104 | + |
| 105 | +std::vector<std::string> GetModelInputNames(const Ort::Session& session) { |
| 106 | + return GetModelInputOrOutputNames(session, /* is_input */ true); |
| 107 | +} |
| 108 | + |
| 109 | +std::vector<std::string> GetModelOutputNames(const Ort::Session& session) { |
| 110 | + return GetModelInputOrOutputNames(session, /* is_input */ false); |
| 111 | +} |
| 112 | + |
| 113 | +std::vector<const char*> GetCstrs(std::span<const std::string> strs) { |
| 114 | + std::vector<const char*> cstrs{}; |
| 115 | + cstrs.reserve(strs.size()); |
| 116 | + std::transform(strs.begin(), strs.end(), std::back_inserter(cstrs), |
| 117 | + [](const std::string& str) { return str.c_str(); }); |
| 118 | + return cstrs; |
| 119 | +} |
| 120 | + |
| 121 | +class Timer { |
| 122 | + public: |
| 123 | + Timer() { Reset(); } |
| 124 | + |
| 125 | + void Reset() { start_ = Clock::now(); } |
| 126 | + |
| 127 | + Duration Elapsed() const { return Clock::now() - start_; } |
| 128 | + |
| 129 | + private: |
| 130 | + Clock::time_point start_; |
| 131 | +}; |
| 132 | + |
| 133 | +struct RunResultStats { |
| 134 | + using DurationFp = std::chrono::duration<float, Duration::period>; |
| 135 | + |
| 136 | + size_t n; |
| 137 | + DurationFp average; |
| 138 | + Duration min, max; |
| 139 | + Duration p50, p90, p99; |
| 140 | +}; |
| 141 | + |
| 142 | +RunResultStats ComputeRunResultStats(const RunResult& run_result) { |
| 143 | + using DurationFp = RunResultStats::DurationFp; |
| 144 | + |
| 145 | + const auto& run_durations = run_result.run_durations; |
| 146 | + |
| 147 | + RunResultStats stats{}; |
| 148 | + const auto n = run_durations.size(); |
| 149 | + stats.n = n; |
| 150 | + if (n > 0) { |
| 151 | + const auto total_run_duration = std::accumulate(run_durations.begin(), run_durations.end(), |
| 152 | + DurationFp{0.0f}); |
| 153 | + stats.average = DurationFp{total_run_duration.count() / n}; |
| 154 | + |
| 155 | + auto sorted_run_durations = run_durations; |
| 156 | + std::sort(sorted_run_durations.begin(), sorted_run_durations.end()); |
| 157 | + stats.min = sorted_run_durations.front(); |
| 158 | + stats.max = sorted_run_durations.back(); |
| 159 | + stats.p50 = sorted_run_durations[static_cast<size_t>(0.5f * n)]; |
| 160 | + stats.p90 = sorted_run_durations[static_cast<size_t>(0.9f * n)]; |
| 161 | + stats.p99 = sorted_run_durations[static_cast<size_t>(0.99f * n)]; |
| 162 | + } |
| 163 | + |
| 164 | + return stats; |
| 165 | +} |
| 166 | + |
| 167 | +} // namespace |
| 168 | + |
| 169 | +RunResult Run(const RunConfig& run_config) { |
| 170 | + RunResult run_result{}; |
| 171 | + |
| 172 | + auto env = Ort::Env{}; |
| 173 | + |
| 174 | + if (run_config.log_level.has_value()) { |
| 175 | + env.UpdateEnvWithCustomLogLevel(static_cast<OrtLoggingLevel>(*run_config.log_level)); |
| 176 | + } |
| 177 | + |
| 178 | + auto session_options = Ort::SessionOptions{}; |
| 179 | + |
| 180 | + Timer timer{}; |
| 181 | + auto session = Ort::Session{env, run_config.model_path.c_str(), session_options}; |
| 182 | + run_result.load_duration = timer.Elapsed(); |
| 183 | + |
| 184 | + auto input_names = GetModelInputNames(session); |
| 185 | + auto input_name_cstrs = GetCstrs(input_names); |
| 186 | + |
| 187 | + auto input_values = GetModelInputValues(session); |
| 188 | + |
| 189 | + auto output_names = GetModelOutputNames(session); |
| 190 | + auto output_name_cstrs = GetCstrs(output_names); |
| 191 | + |
| 192 | + auto run_options = Ort::RunOptions{}; |
| 193 | + |
| 194 | + // warmup |
| 195 | + for (size_t i = 0; i < run_config.num_warmup_iterations; ++i) { |
| 196 | + auto outputs = session.Run(run_options, |
| 197 | + input_name_cstrs.data(), input_values.data(), input_values.size(), |
| 198 | + output_name_cstrs.data(), output_name_cstrs.size()); |
| 199 | + } |
| 200 | + |
| 201 | + // measure runs |
| 202 | + run_result.run_durations.reserve(run_config.num_iterations); |
| 203 | + for (size_t i = 0; i < run_config.num_iterations; ++i) { |
| 204 | + timer.Reset(); |
| 205 | + auto outputs = session.Run(run_options, |
| 206 | + input_name_cstrs.data(), input_values.data(), input_values.size(), |
| 207 | + output_name_cstrs.data(), output_name_cstrs.size()); |
| 208 | + run_result.run_durations.push_back(timer.Elapsed()); |
| 209 | + } |
| 210 | + |
| 211 | + return run_result; |
| 212 | +} |
| 213 | + |
| 214 | +std::string GetRunSummary(const RunConfig& run_config, const RunResult& run_result) { |
| 215 | + auto to_display_duration = []<typename Rep, typename Period>(std::chrono::duration<Rep, Period> d) { |
| 216 | + using DisplayPeriod = std::chrono::microseconds::period; |
| 217 | + using DisplayDuration = std::chrono::duration<Rep, DisplayPeriod>; |
| 218 | + return std::chrono::duration_cast<DisplayDuration>(d); |
| 219 | + }; |
| 220 | + |
| 221 | + const auto model_path = std::filesystem::path{run_config.model_path}; |
| 222 | + |
| 223 | + const auto stats = ComputeRunResultStats(run_result); |
| 224 | + |
| 225 | + const auto summary = std::format( |
| 226 | + "Model: {}\n" |
| 227 | + "Load time: {}\n" |
| 228 | + "N (number of runs): {}\n" |
| 229 | + "Latency\n" |
| 230 | + " avg: {}\n" |
| 231 | + " p50: {}\n" |
| 232 | + " p90: {}\n" |
| 233 | + " p99: {}\n" |
| 234 | + " min: {}\n" |
| 235 | + " max: {}\n", |
| 236 | + model_path.filename().string(), |
| 237 | + to_display_duration(run_result.load_duration), |
| 238 | + stats.n, |
| 239 | + to_display_duration(stats.average), |
| 240 | + to_display_duration(stats.p50), |
| 241 | + to_display_duration(stats.p90), |
| 242 | + to_display_duration(stats.p99), |
| 243 | + to_display_duration(stats.min), |
| 244 | + to_display_duration(stats.max)); |
| 245 | + |
| 246 | + return summary; |
| 247 | +} |
| 248 | + |
| 249 | +} // namespace model_runner |
0 commit comments