**Describe the bug** When using a reasoning model such as o4-mini with`AzureResponsesAgent` and tool calls, the agent errors out with both `store_enabled` as `True` or `False`. Likely because the previous repose id is not being passed or encrypted reasoning content is not sent, respectively. **To Reproduce** Here is the Python code to reproduce the error: ```python client = AsyncOpenAI( api_key=os.getenv("AZURE_REASONING_API_KEY"), base_url="https://<TODO>.cognitiveservices.azure.com/openai/v1/", ## https://<just-replace-this>.cognitiveservices.azure.com/openai/v1/ default_query={"api-version": "preview"}, ) ``` ```python from typing import Annotated from semantic_kernel.agents import AzureResponsesAgent from semantic_kernel.contents import AuthorRole, FunctionCallContent, FunctionResultContent from semantic_kernel.contents.chat_message_content import ChatMessageContent from semantic_kernel.functions import kernel_function # Define a sample plugin for the sample class MenuPlugin: """A sample Menu Plugin used for the concept sample.""" @kernel_function(description="Provides a list of specials from the menu.") def get_specials(self) -> Annotated[str, "Returns the specials from the menu."]: return """ Special Soup: Clam Chowder Special Salad: Cobb Salad Special Drink: Chai Tea """ @kernel_function(description="Provides the price of the requested menu item.") def get_item_price( self, menu_item: Annotated[str, "The name of the menu item."] ) -> Annotated[str, "Returns the price of the menu item."]: return "$9.99" MESSAGES = [] async def handle_intermediate_steps(message: ChatMessageContent) -> None: MESSAGES.append(message) for item in message.items or []: if isinstance(item, FunctionResultContent): print(f"Function Result:> {item.result} for function: {item.name}") elif isinstance(item, FunctionCallContent): print(f"Function Call:> {item.name} with arguments: {item.arguments}") else: print(f"{item}") async def main(): # 1. Create the client using Azure OpenAI resources and configuration # client = AzureResponsesAgent.create_client() # 2. Create a Semantic Kernel agent for the OpenAI Responses API agent = AzureResponsesAgent( ai_model_id="o4-mini", # Replace with your model deployment name client=client, instructions="Answer questions about the menu.", name="Host", plugins=[MenuPlugin()], reasoning_effort="high", # Set the reasoning effort level store_enabled=False, # Set to True if you want to store the responses in Azure ) # 3. Create a thread for the agent # If no thread is provided, a new thread will be # created and returned with the initial response thread = None user_inputs = ["Hello", "What is the special soup?", "What is the special drink?", "How much is that?", "Thank you"] try: for user_input in user_inputs: print(f"# {AuthorRole.USER}: '{user_input}'") async for response in agent.invoke( messages=user_input, thread=thread, on_intermediate_message=handle_intermediate_steps, ): thread = response.thread print(f"# {response.name}: {response.content}") finally: await thread.delete() if thread else None await main() # or use asyncio. ``` NOTE that the error for `store_enabled=False` and `store_enabled=True are different`. When true: `AgentExecutionException: ("<class 'semantic_kernel.agents.open_ai.azure_responses_agent.AzureResponsesAgent'> failed to complete the request", BadRequestError('Error code: 400 - {\'error\': {\'message\': "Item \'fc_688ca9068...\' of type \'function_call\' was provided without its required \'reasoning\' item: \'rs_688ca90...\'.", \'type\': \'invalid_request_error\', \'param\': \'input\', \'code\': None}}')) ` When false: `AgentExecutionException: ("<class 'semantic_kernel.agents.open_ai.azure_responses_agent.AzureResponsesAgent'> failed to complete the request", BadRequestError("Error code: 400 - {'error': {'message': 'No tool output found for function call call_ExGo1....', 'type': 'invalid_request_error', 'param': 'input', 'code': None}}")) ` **Expected behavior** The conversation history should be manged properly when tools are involved. **Screenshots** If applicable, add screenshots to help explain your problem. **Platform** - Language: Python - Source: semantic-kernel==1.35.0 - AI model: Azure OpenAI o4-mini