Skip to content

Commit b1c2688

Browse files
committed
Collect import statements
Along the way, switch to importing modules instead of classes
1 parent 003979d commit b1c2688

File tree

1 file changed

+10
-9
lines changed

1 file changed

+10
-9
lines changed

samples/features/machine-learning-services/python/getting-started/rental-prediction/rental_prediction.sql

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -27,23 +27,24 @@ BEGIN
2727
@language = N'Python'
2828
, @script = N'
2929
30+
from sklearn import linear_model
31+
32+
import pickle
33+
34+
3035
df = rental_train_data
3136
3237
# Get all the columns from the dataframe.
3338
columns = df.columns.tolist()
3439
35-
3640
# Store the variable well be predicting on.
3741
target = "RentalCount"
3842
39-
from sklearn.linear_model import LinearRegression
40-
4143
# Initialize the model class.
42-
lin_model = LinearRegression()
44+
lin_model = linear_model.LinearRegression()
4345
# Fit the model to the training data.
4446
lin_model.fit(df[columns], df[target])
4547
46-
import pickle
4748
#Before saving the model to the DB table, we need to convert it to a binary object
4849
trained_model = pickle.dumps(lin_model)
4950
'
@@ -75,15 +76,15 @@ AS
7576
BEGIN
7677
DECLARE @py_model varbinary(max) = (select model from rental_py_models where model_name = @model);
7778

78-
EXEC sp_execute_external_script
79+
EXEC sp_execute_external_script
7980
@language = N'Python'
8081
, @script = N'
8182
8283
8384
import pickle
8485
rental_model = pickle.loads(py_model)
8586
86-
87+
8788
df = rental_score_data
8889
#print(df)
8990
@@ -106,15 +107,15 @@ lin_mse = mean_squared_error(linpredictions, df[target])
106107
#print(lin_mse)
107108
108109
import pandas as pd
109-
predictions_df = pd.DataFrame(lin_predictions)
110+
predictions_df = pd.DataFrame(lin_predictions)
110111
OutputDataSet = pd.concat([predictions_df, df["RentalCount"], df["Month"], df["Day"], df["WeekDay"], df["Snow"], df["Holiday"], df["Year"]], axis=1)
111112
'
112113
, @input_data_1 = N'Select "RentalCount", "Year" ,"Month", "Day", "WeekDay", "Snow", "Holiday" from rental_data where Year = 2015'
113114
, @input_data_1_name = N'rental_score_data'
114115
, @params = N'@py_model varbinary(max)'
115116
, @py_model = @py_model
116117
with result sets (("RentalCount_Predicted" float, "RentalCount" float, "Month" float,"Day" float,"WeekDay" float,"Snow" float,"Holiday" float, "Year" float));
117-
118+
118119
END;
119120
GO
120121

0 commit comments

Comments
 (0)