|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import math |
| 4 | +import numpy as np |
| 5 | +import argparse |
| 6 | +from time import perf_counter |
| 7 | + |
| 8 | +def all_rotations(polycube): |
| 9 | + """ |
| 10 | + Calculates all rotations of a polycube. |
| 11 | + |
| 12 | + Adapted from https://stackoverflow.com/questions/33190042/how-to-calculate-all-24-rotations-of-3d-array. |
| 13 | + This function computes all 24 rotations around each of the axis x,y,z. It uses numpy operations to do this, to avoid unecessary copies. |
| 14 | + The function returns a generator, to avoid computing all rotations if they are not needed. |
| 15 | + |
| 16 | + Parameters: |
| 17 | + polycube (np.array): 3D Numpy byte array where 1 values indicate polycube positions |
| 18 | +
|
| 19 | + Returns: |
| 20 | + generator(np.array): Yields new rotations of this cube about all axes |
| 21 | + |
| 22 | + """ |
| 23 | + def single_axis_rotation(polycube, axes): |
| 24 | + """Yield four rotations of the given 3d array in the plane spanned by the given axes. |
| 25 | + For example, a rotation in axes (0,1) is a rotation around axis 2""" |
| 26 | + for i in range(4): |
| 27 | + yield np.rot90(polycube, i, axes) |
| 28 | + |
| 29 | + # 4 rotations about axis 0 |
| 30 | + yield from single_axis_rotation(polycube, (1,2)) |
| 31 | + |
| 32 | + # rotate 180 about axis 1, 4 rotations about axis 0 |
| 33 | + yield from single_axis_rotation(np.rot90(polycube, 2, axes=(0,2)), (1,2)) |
| 34 | + |
| 35 | + # rotate 90 or 270 about axis 1, 8 rotations about axis 2 |
| 36 | + yield from single_axis_rotation(np.rot90(polycube, axes=(0,2)), (0,1)) |
| 37 | + yield from single_axis_rotation(np.rot90(polycube, -1, axes=(0,2)), (0,1)) |
| 38 | + |
| 39 | + # rotate about axis 2, 8 rotations about axis 1 |
| 40 | + yield from single_axis_rotation(np.rot90(polycube, axes=(0,1)), (0,2)) |
| 41 | + yield from single_axis_rotation(np.rot90(polycube, -1, axes=(0,1)), (0,2)) |
| 42 | + |
| 43 | +def crop_cube(cube): |
| 44 | + """ |
| 45 | + Crops an np.array to have no all-zero padding around the edge. |
| 46 | +
|
| 47 | + Given in https://stackoverflow.com/questions/39465812/how-to-crop-zero-edges-of-a-numpy-array |
| 48 | + |
| 49 | + Parameters: |
| 50 | + cube (np.array): 3D Numpy byte array where 1 values indicate polycube positions |
| 51 | + |
| 52 | + Returns: |
| 53 | + np.array: Cropped 3D Numpy byte array equivalent to cube, but with no zero padding |
| 54 | + |
| 55 | + """ |
| 56 | + for i in range(cube.ndim): |
| 57 | + cube = np.swapaxes(cube, 0, i) # send i-th axis to front |
| 58 | + while np.all( cube[0]==0 ): |
| 59 | + cube = cube[1:] |
| 60 | + while np.all( cube[-1]==0 ): |
| 61 | + cube = cube[:-1] |
| 62 | + cube = np.swapaxes(cube, 0, i) # send i-th axis to its original position |
| 63 | + return cube |
| 64 | + |
| 65 | +def expand_cube(cube): |
| 66 | + """ |
| 67 | + Expands a polycube by adding single blocks at all valid locations. |
| 68 | + |
| 69 | + Calculates all valid new positions of a polycube by shifting the existing cube +1 and -1 in each dimension. |
| 70 | + New valid cubes are returned via a generator function, in case they are not all needed. |
| 71 | + |
| 72 | + Parameters: |
| 73 | + cube (np.array): 3D Numpy byte array where 1 values indicate polycube positions |
| 74 | + |
| 75 | + Returns: |
| 76 | + generator(np.array): Yields new polycubes that are extensions of cube |
| 77 | + |
| 78 | + """ |
| 79 | + cube = np.pad(cube, 1, 'constant', constant_values=0) |
| 80 | + output_cube = np.array(cube) |
| 81 | + |
| 82 | + xs,ys,zs = cube.nonzero() |
| 83 | + output_cube[xs+1,ys,zs] = 1 |
| 84 | + output_cube[xs-1,ys,zs] = 1 |
| 85 | + output_cube[xs,ys+1,zs] = 1 |
| 86 | + output_cube[xs,ys-1,zs] = 1 |
| 87 | + output_cube[xs,ys,zs+1] = 1 |
| 88 | + output_cube[xs,ys,zs-1] = 1 |
| 89 | + |
| 90 | + exp = (output_cube ^ cube).nonzero() |
| 91 | + |
| 92 | + for (x,y,z) in zip(exp[0], exp[1], exp[2]): |
| 93 | + new_cube = np.array(cube) |
| 94 | + new_cube[x,y,z] = 1 |
| 95 | + yield crop_cube(new_cube) |
| 96 | + |
| 97 | +def generate_polycubes(n, use_cache=False): |
| 98 | + """ |
| 99 | + Generates all polycubes of size n |
| 100 | + |
| 101 | + Generates a list of all possible configurations of n cubes, where all cubes are connected via at least one face. |
| 102 | + Builds each new polycube from the previous set of polycubes n-1. |
| 103 | + Uses an optional cache to save and load polycubes of size n-1 for efficiency. |
| 104 | + |
| 105 | + Parameters: |
| 106 | + n (int): The size of the polycubes to generate, e.g. all combinations of n=4 cubes. |
| 107 | + |
| 108 | + Returns: |
| 109 | + list(np.array): Returns a list of all polycubes of size n as numpy byte arrays |
| 110 | + |
| 111 | + """ |
| 112 | + if n < 1: |
| 113 | + return [] |
| 114 | + elif n == 1: |
| 115 | + return [np.ones((1,1,1), dtype=np.byte)] |
| 116 | + elif n == 2: |
| 117 | + return [np.ones((2,1,1), dtype=np.byte)] |
| 118 | + |
| 119 | + # Check cache |
| 120 | + cache_path = f"cubes_{n}.npy" |
| 121 | + if use_cache and os.path.exists(cache_path): |
| 122 | + print(f"\rLoading polycubes n={n} from cache: ", end = "") |
| 123 | + polycubes = np.load(cache_path, allow_pickle=True) |
| 124 | + print(f"{len(polycubes)} shapes") |
| 125 | + return polycubes |
| 126 | + |
| 127 | + # Empty list of new n-polycubes |
| 128 | + polycubes = [] |
| 129 | + polycubes_rle = set() |
| 130 | + |
| 131 | + base_cubes = generate_polycubes(n-1, use_cache) |
| 132 | + |
| 133 | + for idx, base_cube in enumerate(base_cubes): |
| 134 | + # Iterate over possible expansion positions |
| 135 | + for new_cube in expand_cube(base_cube): |
| 136 | + if not cube_exists_rle(new_cube, polycubes_rle): |
| 137 | + polycubes.append(new_cube) |
| 138 | + polycubes_rle.add(rle(new_cube)) |
| 139 | + |
| 140 | + if (idx % 100 == 0): |
| 141 | + perc = round((idx / len(base_cubes)) * 100,2) |
| 142 | + print(f"\rGenerating polycubes n={n}: {perc}%", end="") |
| 143 | + |
| 144 | + print(f"\rGenerating polycubes n={n}: 100% ") |
| 145 | + |
| 146 | + if use_cache: |
| 147 | + cache_path = f"cubes_{n}.npy" |
| 148 | + np.save(cache_path, np.array(polycubes, dtype=object), allow_pickle=True) |
| 149 | + |
| 150 | + return polycubes |
| 151 | + |
| 152 | +def rle(polycube): |
| 153 | + """ |
| 154 | + Computes a simple run-length encoding of a given polycube. This function allows cubes to be more quickly compared via hashing. |
| 155 | + |
| 156 | + Converts a {0,1} nd array into a tuple that encodes the same shape. The array is first flattened, and then the following algorithm is applied: |
| 157 | +
|
| 158 | + 1) The first three values in tuple contain the x,y,z dimension sizes of the array |
| 159 | + 2) Each string of zeros of length n is replaced with a single value -n |
| 160 | + 3) Each string of ones of length m is replaced with a single value +m |
| 161 | + |
| 162 | + Parameters: |
| 163 | + polycube (np.array): 3D Numpy byte array where 1 values indicate polycube positions |
| 164 | + |
| 165 | + Returns: |
| 166 | + tuple(int): Run length encoded polycube in the form (X, Y, Z, a, b, c, ...) |
| 167 | +
|
| 168 | + """ |
| 169 | + r = [] |
| 170 | + r.extend(polycube.shape) |
| 171 | + current = None |
| 172 | + val = 0 |
| 173 | + for x in polycube.flat: |
| 174 | + if current is None: |
| 175 | + current = x |
| 176 | + val = 1 |
| 177 | + pass |
| 178 | + elif current == x: |
| 179 | + val += 1 |
| 180 | + elif current != x: |
| 181 | + r.append(val if current == 1 else -val) |
| 182 | + current = x |
| 183 | + val = 1 |
| 184 | + |
| 185 | + r.append(val if current == 1 else -val) |
| 186 | + |
| 187 | + return tuple(r) |
| 188 | + |
| 189 | +def cube_exists_rle(polycube, polycubes_rle): |
| 190 | + """ |
| 191 | + Determines if a polycube has already been seen. |
| 192 | + |
| 193 | + Considers all possible rotations of a cube against the existing cubes stored in memory. |
| 194 | + Returns True if the cube exists, or False if it is new. |
| 195 | + |
| 196 | + Parameters: |
| 197 | + polycube (np.array): 3D Numpy byte array where 1 values indicate polycube positions |
| 198 | + |
| 199 | + Returns: |
| 200 | + boolean: True if polycube is already present in the set of all cubes so far. |
| 201 | + |
| 202 | + """ |
| 203 | + for cube_rotation in all_rotations(polycube): |
| 204 | + if rle(cube_rotation) in polycubes_rle: |
| 205 | + return True |
| 206 | + |
| 207 | + return False |
| 208 | + |
| 209 | +if __name__ == "__main__": |
| 210 | + parser = argparse.ArgumentParser( |
| 211 | + prog='Polycube Generator', |
| 212 | + description='Generates all polycubes (combinations of cubes) of size n.') |
| 213 | + |
| 214 | + parser.add_argument('n', metavar='N', type=int, |
| 215 | + help='The number of cubes within each polycube') |
| 216 | + |
| 217 | + #Requires python >=3.9 |
| 218 | + parser.add_argument('--cache', action=argparse.BooleanOptionalAction) |
| 219 | + |
| 220 | + args = parser.parse_args() |
| 221 | + |
| 222 | + n = args.n |
| 223 | + use_cache = args.cache if args.cache is not None else True |
| 224 | + |
| 225 | + # Start the timer |
| 226 | + t1_start = perf_counter() |
| 227 | + |
| 228 | + all_cubes = list(generate_polycubes(n, use_cache=use_cache)) |
| 229 | + |
| 230 | + # Stop the timer |
| 231 | + t1_stop = perf_counter() |
| 232 | + |
| 233 | + print (f"Found {len(all_cubes)} unique polycubes") |
| 234 | + print (f"Elapsed time: {round(t1_stop - t1_start,3)}s") |
| 235 | + |
| 236 | + |
| 237 | +# Code for if you want to generate pictures of the sets of cubes. Will work up to about n=8, before there are simply too many! |
| 238 | +# Could be adapted for larger cube sizes by splitting the dataset up into separate images. |
| 239 | +# def render_shapes(shapes, path): |
| 240 | +# n = len(shapes) |
| 241 | +# dim = max(max(a.shape) for a in shapes) |
| 242 | +# i = math.isqrt(n) + 1 |
| 243 | +# voxel_dim = dim * i |
| 244 | +# voxel_array = np.zeros((voxel_dim + i,voxel_dim + i,dim), dtype=np.byte) |
| 245 | +# pad = 1 |
| 246 | +# for idx, shape in enumerate(shapes): |
| 247 | +# x = (idx % i) * dim + (idx % i) |
| 248 | +# y = (idx // i) * dim + (idx // i) |
| 249 | +# xpad = x * pad |
| 250 | +# ypad = y * pad |
| 251 | +# s = shape.shape |
| 252 | +# voxel_array[x:x + s[0], y:y + s[1] , 0 : s[2]] = shape |
| 253 | + |
| 254 | +# voxel_array = crop_cube(voxel_array) |
| 255 | +# colors = np.empty(voxel_array.shape, dtype=object) |
| 256 | +# colors[:] = '#FFD65DC0' |
| 257 | + |
| 258 | +# ax = plt.figure(figsize=(20,16), dpi=600).add_subplot(projection='3d') |
| 259 | +# ax.voxels(voxel_array, facecolors = colors, edgecolor='k', linewidth=0.1) |
| 260 | + |
| 261 | +# ax.set_xlim([0, voxel_array.shape[0]]) |
| 262 | +# ax.set_ylim([0, voxel_array.shape[1]]) |
| 263 | +# ax.set_zlim([0, voxel_array.shape[2]]) |
| 264 | +# plt.axis("off") |
| 265 | +# ax.set_box_aspect((1, 1, voxel_array.shape[2] / voxel_array.shape[0])) |
| 266 | +# plt.savefig(path + ".png", bbox_inches='tight', pad_inches = 0) |
0 commit comments