|
| 1 | +#[derive(Debug)] |
| 2 | +pub struct Axis { |
| 3 | + lower: f64, |
| 4 | + upper: f64, |
| 5 | + ticks: Vec<f64>, |
| 6 | +} |
| 7 | + |
| 8 | +impl Axis { |
| 9 | + pub fn new(lower: f64, upper: f64) -> Axis { |
| 10 | + assert!(lower < upper); |
| 11 | + let default_max_ticks = 6; |
| 12 | + Axis { |
| 13 | + lower: lower, |
| 14 | + upper: upper, |
| 15 | + ticks: calculate_ticks(lower, upper, default_max_ticks), |
| 16 | + } |
| 17 | + } |
| 18 | + |
| 19 | + pub fn max(&self) -> f64 { |
| 20 | + self.upper |
| 21 | + } |
| 22 | + |
| 23 | + pub fn min(&self) -> f64 { |
| 24 | + self.lower |
| 25 | + } |
| 26 | + |
| 27 | + pub fn ticks(&self) -> &Vec<f64> { |
| 28 | + &self.ticks |
| 29 | + } |
| 30 | +} |
| 31 | + |
| 32 | +/// The base units for the step sizes |
| 33 | +/// They should be within one order of magnitude, e.g. [1,10) |
| 34 | +const BASE_STEPS: [u32; 4] = [1, 2, 4, 5]; |
| 35 | + |
| 36 | +#[derive(Debug,Clone)] |
| 37 | +struct TickSteps { |
| 38 | + next: f64, |
| 39 | +} |
| 40 | + |
| 41 | +impl TickSteps { |
| 42 | + fn start_at(start: f64) -> TickSteps { |
| 43 | + let start_options = TickSteps::scaled_steps(start); |
| 44 | + let overflow = start_options[0] * 10.0; |
| 45 | + let curr = start_options.iter().skip_while(|&step| step < &start).next(); |
| 46 | + |
| 47 | + TickSteps { next: *curr.unwrap_or(&overflow) } |
| 48 | + } |
| 49 | + |
| 50 | + fn scaled_steps(curr: f64) -> Vec<f64> { |
| 51 | + let power = curr.log10().floor(); |
| 52 | + let base_step_scale = 10f64.powf(power); |
| 53 | + BASE_STEPS.iter().map(|&s| (s as f64 * base_step_scale)).collect() |
| 54 | + } |
| 55 | +} |
| 56 | + |
| 57 | +impl Iterator for TickSteps { |
| 58 | + type Item = f64; |
| 59 | + |
| 60 | + fn next(&mut self) -> Option<f64> { |
| 61 | + let curr = self.next; // cache the value we're currently on |
| 62 | + let curr_steps = TickSteps::scaled_steps(self.next); |
| 63 | + let overflow = curr_steps[0] * 10.0; |
| 64 | + self.next = *curr_steps.iter().skip_while(|&s| s <= &curr).next().unwrap_or(&overflow); |
| 65 | + Some(curr) |
| 66 | + } |
| 67 | +} |
| 68 | + |
| 69 | +fn generate_ticks(min: f64, max: f64, step_size: f64) -> Vec<f64> { |
| 70 | + let mut ticks: Vec<f64> = vec![]; |
| 71 | + if min <= 0.0 { |
| 72 | + if max >= 0.0 { |
| 73 | + // standard spanning axis |
| 74 | + ticks.extend((1..).map(|n| -1.0 * n as f64 * step_size).take_while(|&v| v >= min).collect::<Vec<f64>>().iter().rev()); |
| 75 | + ticks.push(0.0); |
| 76 | + ticks.extend((1..).map(|n| n as f64 * step_size).take_while(|&v| v <= max)); |
| 77 | + } else { |
| 78 | + // entirely negative axis |
| 79 | + ticks.extend((1..) |
| 80 | + .map(|n| -1.0 * n as f64 * step_size) |
| 81 | + .skip_while(|&v| v > max) |
| 82 | + .take_while(|&v| v >= min) |
| 83 | + .collect::<Vec<f64>>() |
| 84 | + .iter() |
| 85 | + .rev()); |
| 86 | + } |
| 87 | + } else { |
| 88 | + // entirely positive axis |
| 89 | + ticks.extend((1..) |
| 90 | + .map(|n| n as f64 * step_size) |
| 91 | + .skip_while(|&v| v < min) |
| 92 | + .take_while(|&v| v <= max)); |
| 93 | + } |
| 94 | + ticks |
| 95 | +} |
| 96 | + |
| 97 | +/// Given a range and a step size, work out how many ticks will be displayed |
| 98 | +fn number_of_ticks(min: f64, max: f64, step_size: f64) -> usize { |
| 99 | + generate_ticks(min, max, step_size).len() |
| 100 | +} |
| 101 | + |
| 102 | +/// Given a range of values, and a maximum number of ticks, calulate the step between the ticks |
| 103 | +fn calculate_tick_step_for_range(min: f64, max: f64, max_ticks: usize) -> f64 { |
| 104 | + let range = max - min; |
| 105 | + let min_tick_step = range / max_ticks as f64; |
| 106 | + // Get the first entry which is our smallest possible tick step size |
| 107 | + let smallest_valid_step = TickSteps::start_at(min_tick_step) |
| 108 | + .skip_while(|&s| number_of_ticks(min, max, s) > max_ticks) |
| 109 | + .next() |
| 110 | + .expect("ERROR: We've somehow run out of tick step options!"); |
| 111 | + // Count how many ticks that relates to |
| 112 | + let actual_num_ticks = number_of_ticks(min, max, smallest_valid_step); |
| 113 | + |
| 114 | + // Create a new TickStep iterator, starting at the correct lower bound |
| 115 | + let tick_steps = TickSteps::start_at(smallest_valid_step); |
| 116 | + // Get all the possible tick step sizes that give just as many ticks |
| 117 | + let step_options = tick_steps.take_while(|&s| number_of_ticks(min, max, s) == actual_num_ticks); |
| 118 | + // Get the largest tick step size from the list |
| 119 | + step_options.fold(-1. / 0., f64::max) |
| 120 | +} |
| 121 | + |
| 122 | +/// Given an axis range, calculate the sensible places to place the ticks |
| 123 | +fn calculate_ticks(min: f64, max: f64, max_ticks: usize) -> Vec<f64> { |
| 124 | + let tick_step = calculate_tick_step_for_range(min, max, max_ticks); |
| 125 | + generate_ticks(min, max, tick_step) |
| 126 | +} |
| 127 | + |
| 128 | +#[cfg(test)] |
| 129 | +mod tests { |
| 130 | + use super::*; |
| 131 | + |
| 132 | + #[test] |
| 133 | + fn test_tick_step_generator() { |
| 134 | + let t = TickSteps::start_at(1.0); |
| 135 | + let ts: Vec<_> = t.take(7).collect(); |
| 136 | + assert_eq!(ts, [1.0, 2.0, 4.0, 5.0, 10.0, 20.0, 40.0]); |
| 137 | + |
| 138 | + let t = TickSteps::start_at(100.0); |
| 139 | + let ts: Vec<_> = t.take(5).collect(); |
| 140 | + assert_eq!(ts, [100.0, 200.0, 400.0, 500.0, 1000.0]); |
| 141 | + |
| 142 | + let t = TickSteps::start_at(3.0); |
| 143 | + let ts: Vec<_> = t.take(5).collect(); |
| 144 | + assert_eq!(ts, [4.0, 5.0, 10.0, 20.0, 40.0]); |
| 145 | + |
| 146 | + let t = TickSteps::start_at(8.0); |
| 147 | + let ts: Vec<_> = t.take(3).collect(); |
| 148 | + assert_eq!(ts, [10.0, 20.0, 40.0]); |
| 149 | + } |
| 150 | + |
| 151 | + #[test] |
| 152 | + fn test_number_of_ticks() { |
| 153 | + assert_eq!(number_of_ticks(-7.93, 15.58, 4.0), 5); |
| 154 | + assert_eq!(number_of_ticks(-7.93, 15.58, 5.0), 5); |
| 155 | + assert_eq!(number_of_ticks(0.0, 15.0, 4.0), 4); |
| 156 | + assert_eq!(number_of_ticks(0.0, 15.0, 5.0), 4); |
| 157 | + assert_eq!(number_of_ticks(5.0, 21.0, 4.0), 4); |
| 158 | + assert_eq!(number_of_ticks(5.0, 21.0, 5.0), 4); |
| 159 | + assert_eq!(number_of_ticks(-8.0, 15.58, 4.0), 6); |
| 160 | + assert_eq!(number_of_ticks(-8.0, 15.58, 5.0), 5); |
| 161 | + } |
| 162 | + |
| 163 | + #[test] |
| 164 | + fn test_calculate_tick_step_for_range() { |
| 165 | + assert_eq!(calculate_tick_step_for_range(0.0, 3.0, 6), 1.0); |
| 166 | + assert_eq!(calculate_tick_step_for_range(0.0, 6.0, 6), 2.0); |
| 167 | + assert_eq!(calculate_tick_step_for_range(0.0, 11.0, 6), 2.0); |
| 168 | + assert_eq!(calculate_tick_step_for_range(0.0, 14.0, 6), 4.0); |
| 169 | + assert_eq!(calculate_tick_step_for_range(0.0, 15.0, 6), 5.0); |
| 170 | + assert_eq!(calculate_tick_step_for_range(-1.0, 5.0, 6), 2.0); |
| 171 | + assert_eq!(calculate_tick_step_for_range(-7.93, 15.58, 6), 5.0); |
| 172 | + assert_eq!(calculate_tick_step_for_range(0.0, 0.06, 6), 0.02); |
| 173 | + } |
| 174 | + |
| 175 | + #[test] |
| 176 | + fn test_calculate_ticks() { |
| 177 | + |
| 178 | + macro_rules! assert_approx_eq { |
| 179 | + ($a:expr, $b:expr) => ({ |
| 180 | + let (a, b) = (&$a, &$b); |
| 181 | + assert!((*a - *b).abs() < 1.0e-6, |
| 182 | + "{} is not approximately equal to {}", *a, *b); |
| 183 | + }) |
| 184 | + } |
| 185 | + |
| 186 | + for (prod, want) in calculate_ticks(0.0, 1.0, 6) |
| 187 | + .iter() |
| 188 | + .zip([0.0, 0.2, 0.4, 0.6, 0.8, 1.0].iter()) { |
| 189 | + assert_approx_eq!(prod, want); |
| 190 | + } |
| 191 | + for (prod, want) in calculate_ticks(0.0, 2.0, 6) |
| 192 | + .iter() |
| 193 | + .zip([0.0, 0.4, 0.8, 1.2, 1.6, 2.0].iter()) { |
| 194 | + assert_approx_eq!(prod, want); |
| 195 | + } |
| 196 | + assert_eq!(calculate_ticks(0.0, 3.0, 6), [0.0, 1.0, 2.0, 3.0]); |
| 197 | + assert_eq!(calculate_ticks(0.0, 4.0, 6), [0.0, 1.0, 2.0, 3.0, 4.0]); |
| 198 | + assert_eq!(calculate_ticks(0.0, 5.0, 6), [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]); |
| 199 | + assert_eq!(calculate_ticks(0.0, 6.0, 6), [0.0, 2.0, 4.0, 6.0]); |
| 200 | + assert_eq!(calculate_ticks(0.0, 7.0, 6), [0.0, 2.0, 4.0, 6.0]); |
| 201 | + assert_eq!(calculate_ticks(0.0, 8.0, 6), [0.0, 2.0, 4.0, 6.0, 8.0]); |
| 202 | + assert_eq!(calculate_ticks(0.0, 9.0, 6), [0.0, 2.0, 4.0, 6.0, 8.0]); |
| 203 | + assert_eq!(calculate_ticks(0.0, 10.0, 6), |
| 204 | + [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]); |
| 205 | + assert_eq!(calculate_ticks(0.0, 11.0, 6), |
| 206 | + [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]); |
| 207 | + assert_eq!(calculate_ticks(0.0, 12.0, 6), [0.0, 4.0, 8.0, 12.0]); |
| 208 | + assert_eq!(calculate_ticks(0.0, 13.0, 6), [0.0, 4.0, 8.0, 12.0]); |
| 209 | + assert_eq!(calculate_ticks(0.0, 14.0, 6), [0.0, 4.0, 8.0, 12.0]); |
| 210 | + assert_eq!(calculate_ticks(0.0, 15.0, 6), [0.0, 5.0, 10.0, 15.0]); |
| 211 | + assert_eq!(calculate_ticks(0.0, 16.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]); |
| 212 | + assert_eq!(calculate_ticks(0.0, 17.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]); |
| 213 | + assert_eq!(calculate_ticks(0.0, 18.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]); |
| 214 | + assert_eq!(calculate_ticks(0.0, 19.0, 6), [0.0, 4.0, 8.0, 12.0, 16.0]); |
| 215 | + assert_eq!(calculate_ticks(0.0, 20.0, 6), |
| 216 | + [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]); |
| 217 | + assert_eq!(calculate_ticks(0.0, 21.0, 6), |
| 218 | + [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]); |
| 219 | + assert_eq!(calculate_ticks(0.0, 22.0, 6), |
| 220 | + [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]); |
| 221 | + assert_eq!(calculate_ticks(0.0, 23.0, 6), |
| 222 | + [0.0, 4.0, 8.0, 12.0, 16.0, 20.0]); |
| 223 | + assert_eq!(calculate_ticks(0.0, 24.0, 6), [0.0, 5.0, 10.0, 15.0, 20.0]); |
| 224 | + assert_eq!(calculate_ticks(0.0, 25.0, 6), |
| 225 | + [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]); |
| 226 | + assert_eq!(calculate_ticks(0.0, 26.0, 6), |
| 227 | + [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]); |
| 228 | + assert_eq!(calculate_ticks(0.0, 27.0, 6), |
| 229 | + [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]); |
| 230 | + assert_eq!(calculate_ticks(0.0, 28.0, 6), |
| 231 | + [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]); |
| 232 | + assert_eq!(calculate_ticks(0.0, 29.0, 6), |
| 233 | + [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]); |
| 234 | + assert_eq!(calculate_ticks(0.0, 30.0, 6), [0.0, 10.0, 20.0, 30.0]); |
| 235 | + assert_eq!(calculate_ticks(0.0, 31.0, 6), [0.0, 10.0, 20.0, 30.0]); |
| 236 | + //... |
| 237 | + assert_eq!(calculate_ticks(0.0, 40.0, 6), [0.0, 10.0, 20.0, 30.0, 40.0]); |
| 238 | + assert_eq!(calculate_ticks(0.0, 50.0, 6), |
| 239 | + [0.0, 10.0, 20.0, 30.0, 40.0, 50.0]); |
| 240 | + assert_eq!(calculate_ticks(0.0, 60.0, 6), [0.0, 20.0, 40.0, 60.0]); |
| 241 | + assert_eq!(calculate_ticks(0.0, 70.0, 6), [0.0, 20.0, 40.0, 60.0]); |
| 242 | + assert_eq!(calculate_ticks(0.0, 80.0, 6), [0.0, 20.0, 40.0, 60.0, 80.0]); |
| 243 | + assert_eq!(calculate_ticks(0.0, 90.0, 6), [0.0, 20.0, 40.0, 60.0, 80.0]); |
| 244 | + assert_eq!(calculate_ticks(0.0, 100.0, 6), |
| 245 | + [0.0, 20.0, 40.0, 60.0, 80.0, 100.0]); |
| 246 | + assert_eq!(calculate_ticks(0.0, 110.0, 6), |
| 247 | + [0.0, 20.0, 40.0, 60.0, 80.0, 100.0]); |
| 248 | + assert_eq!(calculate_ticks(0.0, 120.0, 6), [0.0, 40.0, 80.0, 120.0]); |
| 249 | + assert_eq!(calculate_ticks(0.0, 130.0, 6), [0.0, 40.0, 80.0, 120.0]); |
| 250 | + assert_eq!(calculate_ticks(0.0, 140.0, 6), [0.0, 40.0, 80.0, 120.0]); |
| 251 | + assert_eq!(calculate_ticks(0.0, 150.0, 6), [0.0, 50.0, 100.0, 150.0]); |
| 252 | + //... |
| 253 | + assert_eq!(calculate_ticks(0.0, 3475.0, 6), |
| 254 | + [0.0, 1000.0, 2000.0, 3000.0]); |
| 255 | + |
| 256 | + assert_eq!(calculate_ticks(-10.0, -3.0, 6), [-10.0, -8.0, -6.0, -4.0]); |
| 257 | + } |
| 258 | +} |
0 commit comments