|
| 1 | +package io.milvus.v2; |
| 2 | + |
| 3 | +import com.google.gson.Gson; |
| 4 | +import com.google.gson.JsonObject; |
| 5 | +import io.milvus.common.clientenum.FunctionType; |
| 6 | +import io.milvus.v2.client.ConnectConfig; |
| 7 | +import io.milvus.v2.client.MilvusClientV2; |
| 8 | +import io.milvus.v2.common.ConsistencyLevel; |
| 9 | +import io.milvus.v2.common.DataType; |
| 10 | +import io.milvus.v2.common.IndexParam; |
| 11 | +import io.milvus.v2.service.collection.request.AddFieldReq; |
| 12 | +import io.milvus.v2.service.collection.request.CreateCollectionReq; |
| 13 | +import io.milvus.v2.service.collection.request.DropCollectionReq; |
| 14 | +import io.milvus.v2.service.vector.request.InsertReq; |
| 15 | +import io.milvus.v2.service.vector.request.QueryReq; |
| 16 | +import io.milvus.v2.service.vector.request.SearchReq; |
| 17 | +import io.milvus.v2.service.vector.request.data.EmbeddedText; |
| 18 | +import io.milvus.v2.service.vector.response.QueryResp; |
| 19 | +import io.milvus.v2.service.vector.response.SearchResp; |
| 20 | + |
| 21 | +import java.util.*; |
| 22 | + |
| 23 | +public class MultiAnalyzerExample { |
| 24 | + private static final String COLLECTION_NAME = "java_sdk_example_multi_analyzer_v2"; |
| 25 | + private static final String ID_FIELD = "id"; |
| 26 | + private static final String VECTOR_FIELD = "vector"; |
| 27 | + private static final String TEXT_FIELD = "text"; |
| 28 | + private static final String LANGUAGE_FIELD = "language"; |
| 29 | + |
| 30 | + private static void buildCollection(MilvusClientV2 client) { |
| 31 | + // Drop collection if exists |
| 32 | + client.dropCollection(DropCollectionReq.builder() |
| 33 | + .collectionName(COLLECTION_NAME) |
| 34 | + .build()); |
| 35 | + |
| 36 | + // Create collection |
| 37 | + CreateCollectionReq.CollectionSchema schema = CreateCollectionReq.CollectionSchema.builder() |
| 38 | + .build(); |
| 39 | + schema.addField(AddFieldReq.builder() |
| 40 | + .fieldName(ID_FIELD) |
| 41 | + .dataType(DataType.Int64) |
| 42 | + .isPrimaryKey(true) |
| 43 | + .autoID(true) |
| 44 | + .build()); |
| 45 | + |
| 46 | + // apply multiple analyzers to the text field, so that insert data can specify different tokenizers for each row. |
| 47 | + // in this example, texts are written by multiple languages, so we use multiple analyzers to handle different texts. |
| 48 | + // to use multiple analyzers, there must be a field to specify the language type, in this example, the "language" |
| 49 | + // field is used for this purpose. multiple analyzers is optional, no need to set it if the data only contains one |
| 50 | + // language, no need to add the "language" field if the data only contains one language. |
| 51 | + // tokenizer: |
| 52 | + // english: https://milvus.io/docs/english-analyzer.md |
| 53 | + // chinese: https://milvus.io/docs/chinese-analyzer.md |
| 54 | + // lindera: https://milvus.io/docs/lindera-tokenizer.md |
| 55 | + // icu: https://milvus.io/docs/icu-tokenizer.md |
| 56 | + // filter: |
| 57 | + // lowercase: https://milvus.io/docs/lowercase-filter.md |
| 58 | + // removepunct: https://milvus.io/docs/removepunct-filter.md |
| 59 | + // asciifolding: https://milvus.io/docs/ascii-folding-filter.md |
| 60 | + Map<String, Object> analyzerParams = new HashMap<>(); |
| 61 | + analyzerParams.put("analyzers", new HashMap<String, Object>() {{ |
| 62 | + put("english", new HashMap<String, Object>() {{ |
| 63 | + put("type", "english"); |
| 64 | + }}); |
| 65 | + put("chinese", new HashMap<String, Object>() {{ |
| 66 | + put("tokenizer", "jieba"); |
| 67 | + put("filter", Arrays.asList("lowercase", "removepunct")); |
| 68 | + }}); |
| 69 | + put("japanese", new HashMap<String, Object>() {{ |
| 70 | + put("tokenizer", new HashMap<String, Object>() {{ |
| 71 | + put("type", "lindera"); |
| 72 | + put("dict_kind", "ipadic"); |
| 73 | + }}); |
| 74 | + }}); |
| 75 | + put("default", new HashMap<String, Object>() {{ |
| 76 | + put("tokenizer", "icu"); |
| 77 | + put("filter", Arrays.asList("lowercase", "removepunct", "asciifolding")); |
| 78 | + }}); |
| 79 | + }}); |
| 80 | + analyzerParams.put("by_field", "language"); |
| 81 | + analyzerParams.put("alias", new HashMap<String, Object>() {{ |
| 82 | + put("cn", "chinese"); |
| 83 | + put("en", "english"); |
| 84 | + put("jap", "japanese"); |
| 85 | + }}); |
| 86 | + |
| 87 | + schema.addField(AddFieldReq.builder() |
| 88 | + .fieldName(TEXT_FIELD) |
| 89 | + .dataType(DataType.VarChar) |
| 90 | + .maxLength(65535) |
| 91 | + .enableAnalyzer(true) // must enable this if you use Function |
| 92 | + .multiAnalyzerParams(analyzerParams) |
| 93 | + .build()); |
| 94 | + schema.addField(AddFieldReq.builder() |
| 95 | + .fieldName(LANGUAGE_FIELD) |
| 96 | + .dataType(DataType.VarChar) |
| 97 | + .maxLength(100) |
| 98 | + .build()); |
| 99 | + schema.addField(AddFieldReq.builder() |
| 100 | + .fieldName(VECTOR_FIELD) |
| 101 | + .dataType(DataType.SparseFloatVector) |
| 102 | + .build()); |
| 103 | + |
| 104 | + // With this function, milvus will convert the strings of "text" field to sparse vectors of "vector" field |
| 105 | + // by built-in tokenizer and analyzer |
| 106 | + // Read the link for more info: https://milvus.io/docs/full-text-search.md |
| 107 | + schema.addFunction(CreateCollectionReq.Function.builder() |
| 108 | + .functionType(FunctionType.BM25) |
| 109 | + .name("function_bm25") |
| 110 | + .inputFieldNames(Collections.singletonList(TEXT_FIELD)) |
| 111 | + .outputFieldNames(Collections.singletonList(VECTOR_FIELD)) |
| 112 | + .build()); |
| 113 | + |
| 114 | + List<IndexParam> indexes = new ArrayList<>(); |
| 115 | + indexes.add(IndexParam.builder() |
| 116 | + .fieldName(VECTOR_FIELD) |
| 117 | + .indexType(IndexParam.IndexType.SPARSE_INVERTED_INDEX) |
| 118 | + .metricType(IndexParam.MetricType.BM25) // to use full text search, metric type must be "BM25" |
| 119 | + .build()); |
| 120 | + |
| 121 | + CreateCollectionReq requestCreate = CreateCollectionReq.builder() |
| 122 | + .collectionName(COLLECTION_NAME) |
| 123 | + .collectionSchema(schema) |
| 124 | + .indexParams(indexes) |
| 125 | + .consistencyLevel(ConsistencyLevel.BOUNDED) |
| 126 | + .build(); |
| 127 | + client.createCollection(requestCreate); |
| 128 | + System.out.println("Collection created"); |
| 129 | + |
| 130 | + // Insert rows |
| 131 | + Gson gson = new Gson(); |
| 132 | + List<JsonObject> rows = Arrays.asList( |
| 133 | + gson.fromJson("{\"language\": \"en\", \"text\": \"Milvus is an open-source vector database\"}", JsonObject.class), |
| 134 | + gson.fromJson("{\"language\": \"en\", \"text\": \"AI applications help people better life\"}", JsonObject.class), |
| 135 | + gson.fromJson("{\"language\": \"en\", \"text\": \"Will the electric car replace gas-powered car?\"}", JsonObject.class), |
| 136 | + gson.fromJson("{\"language\": \"en\", \"text\": \"LangChain is a composable framework to build with LLMs. Milvus is integrated into LangChain.\"}", JsonObject.class), |
| 137 | + gson.fromJson("{\"language\": \"en\", \"text\": \"RAG is the process of optimizing the output of a large language model\"}", JsonObject.class), |
| 138 | + gson.fromJson("{\"language\": \"en\", \"text\": \"Newton is one of the greatest scientist of human history\"}", JsonObject.class), |
| 139 | + gson.fromJson("{\"language\": \"en\", \"text\": \"Metric type L2 is Euclidean distance\"}", JsonObject.class), |
| 140 | + gson.fromJson("{\"language\": \"en\", \"text\": \"Embeddings represent real-world objects, like words, images, or videos, in a form that computers can process.\"}", JsonObject.class), |
| 141 | + gson.fromJson("{\"language\": \"en\", \"text\": \"The moon is 384,400 km distance away from earth\"}", JsonObject.class), |
| 142 | + gson.fromJson("{\"language\": \"en\", \"text\": \"Milvus supports L2 distance and IP similarity for float vector.\"}", JsonObject.class), |
| 143 | + gson.fromJson("{\"language\": \"cn\", \"text\": \"人工智能正在改变技术领域\"}", JsonObject.class), |
| 144 | + gson.fromJson("{\"language\": \"cn\", \"text\": \"机器学习模型需要大型数据集\"}", JsonObject.class), |
| 145 | + gson.fromJson("{\"language\": \"cn\", \"text\": \"Milvus 是一个高性能、可扩展的向量数据库!\"}", JsonObject.class), |
| 146 | + gson.fromJson("{\"language\": \"jap\", \"text\": \"Milvusの新機能をご確認くださいこのページでは\"}", JsonObject.class), |
| 147 | + gson.fromJson("{\"language\": \"jap\", \"text\": \"非構造化データやマルチモーダルデータを構造化されたコレクションに整理することができます\"}", JsonObject.class), |
| 148 | + gson.fromJson("{\"language\": \"jap\", \"text\": \"主な利点はデータアクセスパターンにある\"}", JsonObject.class), |
| 149 | + gson.fromJson("{\"language\": \"default\", \"text\": \"토큰화 도구는 소프트웨어 국제화를 위한 핵심 도구를 제공하는\"}", JsonObject.class), |
| 150 | + gson.fromJson("{\"language\": \"default\", \"text\": \"Les applications qui suivent le temps à travers les régions\"}", JsonObject.class), |
| 151 | + gson.fromJson("{\"language\": \"default\", \"text\": \"Sin embargo, esto puede aumentar la complejidad de las consultas y de la gestión\"}", JsonObject.class), |
| 152 | + gson.fromJson("{\"language\": \"default\", \"text\": \"المثال، يوضح الرمز التالي كيفية إضافة عامل تصفية الحقل القياسي إلى بحث متجه\"}", JsonObject.class) |
| 153 | + ); |
| 154 | + |
| 155 | + client.insert(InsertReq.builder() |
| 156 | + .collectionName(COLLECTION_NAME) |
| 157 | + .data(rows) |
| 158 | + .build()); |
| 159 | + |
| 160 | + // Get row count, set ConsistencyLevel.STRONG to sync the data to query node so that data is visible |
| 161 | + QueryResp countR = client.query(QueryReq.builder() |
| 162 | + .collectionName(COLLECTION_NAME) |
| 163 | + .outputFields(Collections.singletonList("count(*)")) |
| 164 | + .consistencyLevel(ConsistencyLevel.STRONG) |
| 165 | + .build()); |
| 166 | + System.out.printf("%d rows in collection\n", (long) countR.getQueryResults().get(0).getEntity().get("count(*)")); |
| 167 | + } |
| 168 | + |
| 169 | + private static void searchByText(MilvusClientV2 client, String text, String language) { |
| 170 | + System.out.printf("\n===============================Language:%s==============================%n", language); |
| 171 | + System.out.println("Text: " + text); |
| 172 | + // The text is tokenized inside server and turned into a sparse embedding to compare with the vector field |
| 173 | + Map<String, Object> searchParams = new HashMap<>(); |
| 174 | + searchParams.put("analyzer_name", language); |
| 175 | + SearchResp searchResp = client.search(SearchReq.builder() |
| 176 | + .collectionName(COLLECTION_NAME) |
| 177 | + .data(Collections.singletonList(new EmbeddedText(text))) |
| 178 | + .limit(5) |
| 179 | + .searchParams(searchParams) |
| 180 | + .outputFields(Arrays.asList(TEXT_FIELD, LANGUAGE_FIELD)) |
| 181 | + .build()); |
| 182 | + System.out.println("Search results:"); |
| 183 | + List<List<SearchResp.SearchResult>> searchResults = searchResp.getSearchResults(); |
| 184 | + for (List<SearchResp.SearchResult> results : searchResults) { |
| 185 | + for (SearchResp.SearchResult result : results) { |
| 186 | + System.out.println(result); |
| 187 | + } |
| 188 | + } |
| 189 | + } |
| 190 | + |
| 191 | + public static void main(String[] args) { |
| 192 | + ConnectConfig config = ConnectConfig.builder() |
| 193 | + .uri("http://localhost:19530") |
| 194 | + .build(); |
| 195 | + MilvusClientV2 client = new MilvusClientV2(config); |
| 196 | + |
| 197 | + buildCollection(client); |
| 198 | + |
| 199 | + // Query by filtering expression |
| 200 | + searchByText(client, "Milvus vector database", "english"); |
| 201 | + searchByText(client, "人工智能与机器学习", "chinese"); |
| 202 | + searchByText(client, "非構造化データ", "japanese"); |
| 203 | + searchByText(client, "Gestion des applications", "default"); |
| 204 | + |
| 205 | + client.close(); |
| 206 | + } |
| 207 | +} |
0 commit comments