|
| 1 | +import warnings |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from sklearn.preprocessing import StandardScaler |
| 5 | +from sklearn.utils import check_random_state |
| 6 | + |
| 7 | + |
| 8 | +class GaussianDistribution: |
| 9 | + """ |
| 10 | + Generator for second-order Gaussian variables using the equi-correlated method. |
| 11 | + Creates synthetic variables that preserve the covariance structure of the original |
| 12 | + variables while ensuring conditional independence between the original and synthetic data. |
| 13 | + Parameters |
| 14 | + ---------- |
| 15 | + cov_estimator : object |
| 16 | + Estimator for computing the covariance matrix. Must implement fit and |
| 17 | + have a covariance_ attribute after fitting. |
| 18 | + random_state : int or None, default=None |
| 19 | + Random seed for generating synthetic data. |
| 20 | + centered : bool, default=False |
| 21 | + Whether to center and scale the input data before generating synthetic variables. |
| 22 | + tol : float, default=1e-14 |
| 23 | + Tolerance for numerical stability in matrix computations. |
| 24 | + Attributes |
| 25 | + ---------- |
| 26 | + mu_tilde_ : ndarray of shape (n_samples, n_features) |
| 27 | + Mean matrix for generating synthetic variables. |
| 28 | + sigma_tilde_decompose_ : ndarray of shape (n_features, n_features) |
| 29 | + Cholesky decomposition of the synthetic covariance matrix. |
| 30 | + References |
| 31 | + ---------- |
| 32 | + .. footbibliography:: |
| 33 | + """ |
| 34 | + |
| 35 | + def __init__(self, cov_estimator, random_state=None, centered=False, tol=1e-14): |
| 36 | + self.cov_estimator = cov_estimator |
| 37 | + self.centered = centered |
| 38 | + self.tol = tol |
| 39 | + self.rng = check_random_state(random_state) |
| 40 | + |
| 41 | + def fit(self, X): |
| 42 | + """ |
| 43 | + Fit the Gaussian synthetic variable generator. |
| 44 | + This method estimates the parameters needed to generate Gaussian synthetic variables |
| 45 | + based on the input data. It follows a methodology for creating second-order |
| 46 | + synthetic variables that preserve the covariance structure. |
| 47 | + Parameters |
| 48 | + ---------- |
| 49 | + X : array-like of shape (n_samples, n_features) |
| 50 | + The input samples used to estimate the parameters for synthetic variable generation. |
| 51 | + The data is assumed to follow a Gaussian distribution. |
| 52 | + Returns |
| 53 | + ------- |
| 54 | + self : object |
| 55 | + Returns the instance itself. |
| 56 | + Notes |
| 57 | + ----- |
| 58 | + The method implements the following steps: |
| 59 | + 1. Centers and scales the data if specified |
| 60 | + 2. Estimates mean and covariance of input data |
| 61 | + 3. Computes parameters for synthetic variable generation |
| 62 | + """ |
| 63 | + _, n_features = X.shape |
| 64 | + if self.centered: |
| 65 | + X_ = StandardScaler().fit_transform(X) |
| 66 | + else: |
| 67 | + X_ = X |
| 68 | + |
| 69 | + # estimation of X distribution |
| 70 | + # original implementation: |
| 71 | + # https://github.com/msesia/knockoff-filter/blob/master/R/knockoff/R/create_second_order.R |
| 72 | + mu = X_.mean(axis=0) |
| 73 | + sigma = self.cov_estimator.fit(X_).covariance_ |
| 74 | + |
| 75 | + diag_s = np.diag(_s_equi(sigma, tol=self.tol)) |
| 76 | + |
| 77 | + sigma_inv_s = np.linalg.solve(sigma, diag_s) |
| 78 | + |
| 79 | + # First part on the RHS of equation 1.4 in barber2015controlling |
| 80 | + self.mu_tilde_ = X - np.dot(X - mu, sigma_inv_s) |
| 81 | + # To calculate the Cholesky decomposition later on |
| 82 | + sigma_tilde = 2 * diag_s - diag_s.dot(sigma_inv_s) |
| 83 | + # test is the matrix is positive definite |
| 84 | + while not np.all(np.linalg.eigvalsh(sigma_tilde) > self.tol): |
| 85 | + sigma_tilde += 1e-10 * np.eye(n_features) |
| 86 | + warnings.warn( |
| 87 | + "The conditional covariance matrix for knockoffs is not positive " |
| 88 | + "definite. Adding minor positive value to the matrix.", |
| 89 | + UserWarning, |
| 90 | + ) |
| 91 | + |
| 92 | + self.sigma_tilde_decompose_ = np.linalg.cholesky(sigma_tilde) |
| 93 | + |
| 94 | + return self |
| 95 | + |
| 96 | + def _check_fit(self): |
| 97 | + """ |
| 98 | + Check if the model has been fit before performing analysis. |
| 99 | + Raises |
| 100 | + ------ |
| 101 | + ValueError |
| 102 | + If any of the required attributes are missing, indicating the model |
| 103 | + hasn't been fit before generating synthetic variables. |
| 104 | + """ |
| 105 | + if not hasattr(self, "mu_tilde_") or not hasattr( |
| 106 | + self, "sigma_tilde_decompose_" |
| 107 | + ): |
| 108 | + raise ValueError("The GaussianGenerator requires to be fit before simulate") |
| 109 | + |
| 110 | + def sample(self): |
| 111 | + """ |
| 112 | + Generate synthetic variables. |
| 113 | + This function generates synthetic variables that preserve the covariance structure |
| 114 | + of the original data while ensuring conditional independence. |
| 115 | + Returns |
| 116 | + ------- |
| 117 | + X_tilde : 2D ndarray (n_samples, n_features) |
| 118 | + The synthetic variables. |
| 119 | + """ |
| 120 | + self._check_fit() |
| 121 | + n_samples, n_features = self.mu_tilde_.shape |
| 122 | + |
| 123 | + # create a uniform noise for all the data |
| 124 | + u_tilde = self.rng.randn(n_samples, n_features) |
| 125 | + |
| 126 | + # Equation 1.4 in barber2015controlling |
| 127 | + X_tilde = self.mu_tilde_ + np.dot(u_tilde, self.sigma_tilde_decompose_) |
| 128 | + return X_tilde |
| 129 | + |
| 130 | + |
| 131 | +def _s_equi(sigma, tol=1e-14): |
| 132 | + """ |
| 133 | + Estimate the diagonal matrix of correlation between real |
| 134 | + and knockoff variables using the equi-correlated equation. |
| 135 | + This function estimates the diagonal matrix of correlation |
| 136 | + between real and knockoff variables using the equi-correlated |
| 137 | + equation described in :footcite:t:`barber2015controlling` and |
| 138 | + :footcite:t:`candes2018panning`. It takes as input the empirical |
| 139 | + covariance matrix sigma and a tolerance value tol, |
| 140 | + and returns a vector of diagonal values of the estimated |
| 141 | + matrix diag{s}. |
| 142 | + Parameters |
| 143 | + ---------- |
| 144 | + sigma : 2D ndarray (n_features, n_features) |
| 145 | + The empirical covariance matrix calculated from |
| 146 | + the original design matrix. |
| 147 | + tol : float, optional |
| 148 | + A tolerance value used for numerical stability in the calculation |
| 149 | + of the eigenvalues of the correlation matrix. |
| 150 | + Returns |
| 151 | + ------- |
| 152 | + 1D ndarray (n_features, ) |
| 153 | + A vector of diagonal values of the estimated matrix diag{s}. |
| 154 | + Raises |
| 155 | + ------ |
| 156 | + Exception |
| 157 | + If the covariance matrix is not positive-definite. |
| 158 | + """ |
| 159 | + n_features = sigma.shape[0] |
| 160 | + |
| 161 | + # Convert covariance matrix to correlation matrix |
| 162 | + # as example see cov2corr from statsmodels |
| 163 | + features_std = np.sqrt(np.diag(sigma)) |
| 164 | + scale = np.outer(features_std, features_std) |
| 165 | + corr_matrix = sigma / scale |
| 166 | + |
| 167 | + eig_value = np.linalg.eigvalsh(corr_matrix) |
| 168 | + lambda_min = np.min(eig_value[0]) |
| 169 | + # check if the matrix is positive-defined |
| 170 | + if lambda_min <= 0: |
| 171 | + raise Exception("The covariance matrix is not positive-definite.") |
| 172 | + |
| 173 | + s = np.ones(n_features) * min(2 * lambda_min, 1) |
| 174 | + |
| 175 | + psd = np.all(np.linalg.eigvalsh(2 * corr_matrix - np.diag(s)) > tol) |
| 176 | + s_eps = 0 |
| 177 | + while not psd: |
| 178 | + if s_eps == 0: |
| 179 | + s_eps = np.finfo(type(s[0])).eps # avoid zeros |
| 180 | + else: |
| 181 | + s_eps *= 10 |
| 182 | + # if all eigval > 0 then the matrix is positive define |
| 183 | + psd = np.all( |
| 184 | + np.linalg.eigvalsh(2 * corr_matrix - np.diag(s * (1 - s_eps))) > tol |
| 185 | + ) |
| 186 | + warnings.warn( |
| 187 | + "The equi-correlated matrix for knockoffs is not positive " |
| 188 | + f"definite. Reduce the value of distance by {s_eps}.", |
| 189 | + UserWarning, |
| 190 | + ) |
| 191 | + |
| 192 | + s = s * (1 - s_eps) |
| 193 | + |
| 194 | + return s * np.diag(sigma) |
0 commit comments